1
|
Pang XL, Li J, Wang J, Yan SS, Yang J. MiR-142-3p Regulates ILC1s by Targeting HMGB1 via the NF-κB Pathway in a Mouse Model of Early Pregnancy Loss. Curr Med Sci 2024; 44:195-211. [PMID: 38393528 DOI: 10.1007/s11596-024-2833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Innate lymphoid cells (ILCs) are a class of newly discovered immunocytes. Group 1 ILCs (ILC1s) are identified in the decidua of humans and mice. High mobility group box 1 (HMGB1) is predicted to be one of the target genes of miR-142-3p, which is closely related to pregnancy-related diseases. Furthermore, miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway. This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway. METHODS Mouse models of normal pregnancy and abortion were constructed, and the alterations of ILC1s, miR-142-3p, ILC1 transcription factor (T-bet), and pro-inflammatory cytokines of ILC1s (TNF-α, IFN-γ and IL-2) were detected in mice from different groups. The targeting regulation of HMGB1 by miR-142-3p in ILC1s, and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated. In addition, the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8, Annexin-V/PI, ELISA, and RT-PCR, respectively. Furthermore, changes of the NF-κB signaling pathway in ILC1s were examined in the different groups. For the in vivo studies, miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface, and further detect the expression of HMGB1, pro-inflammatory cytokines, and the NF-κB signaling pathway. RESULTS The number of ILC1s was significantly increased, the level of HMGB1 was significantly upregulated, and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice (all P<0.05). In addition, miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway (P<0.05). The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group (all P<0.05). CONCLUSION miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway, and attenuate the inflammation at the maternal-fetal interface in abortive mice.
Collapse
Affiliation(s)
- Xiang-Li Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China
| | - Jing Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Si-Si Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
2
|
Bogović Crnčić T, Girotto N, Ilić Tomaš M, Krištofić I, Klobučar S, Batičić L, Ćurko-Cofek B, Sotošek V. Innate Immunity in Autoimmune Thyroid Disease during Pregnancy. Int J Mol Sci 2023; 24:15442. [PMID: 37895126 PMCID: PMC10607674 DOI: 10.3390/ijms242015442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Autoimmune thyroid disease (AITD) is the most common organ-specific autoimmune disorder clinically presented as Hashimoto thyroiditis (HT) and Graves' disease (GD). The pathogenesis of AITD is caused by an inappropriate immune response related to genetic, non-genetic, and environmental factors. Pregnancy is one of the factors that have a great influence on the function of the thyroid gland because of the increased metabolic demand and the effects of hormones related to pregnancy. During pregnancy, an adaptation of the maternal immune system occurs, especially of the innate immune system engaged in maintaining adaptive immunity in the tolerant state, preventing the rejection of the fetus. Pregnancy-related hormonal changes (estrogen, progesterone, hCG) may modulate the activity of innate immune cells, potentially worsening the course of AITD during pregnancy. This especially applies to NK cells, which are associated with exacerbation of HD and GD. On the other hand, previous thyroid disorders can affect fertility and cause adverse outcomes of pregnancy, such as placental abruption, spontaneous abortion, and premature delivery. Additionally, it can cause fetal growth retardation and may contribute to impaired neuropsychological development of the fetus. Therefore, maintaining the thyroid equilibrium in women of reproductive age and in pregnant women is of the highest importance.
Collapse
Affiliation(s)
- Tatjana Bogović Crnčić
- Department of Nuclear Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.B.C.); (M.I.T.)
| | - Neva Girotto
- Department of Nuclear Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.B.C.); (M.I.T.)
| | - Maja Ilić Tomaš
- Department of Nuclear Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.B.C.); (M.I.T.)
| | - Ines Krištofić
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Sanja Klobučar
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Clinical Medical Sciences II, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Ma K, Zheng ZR, Meng Y. Natural Killer Cells, as the Rising Point in Tissues, Are Forgotten in the Kidney. Biomolecules 2023; 13:biom13050748. [PMID: 37238618 DOI: 10.3390/biom13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural killer (NK) cells are members of a rapidly expanding family of innate lymphoid cells (ILCs). NK cells play roles in the spleen, periphery, and in many tissues, such as the liver, uterine, lung, adipose, and so on. While the immunological functions of NK cells are well established in these organs, comparatively little is known about NK cells in the kidney. Our understanding of NK cells is rapidly rising, with more and more studies highlighting the functional significance of NK cells in different types of kidney diseases. Recent progress has been made in translating these findings to clinical diseases that occur in the kidney, with indications of subset-specific roles of NK cells in the kidney. For the development of targeted therapeutics to delay kidney disease progression, a better understanding of the NK cell with respect to the mechanisms of kidney diseases is necessary. In order to promote the targeted treatment ability of NK cells in clinical diseases, in this paper we demonstrate the roles that NK cells play in different organs, especially the functions of NK cells in the kidney.
Collapse
Affiliation(s)
- Ke Ma
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Zi-Run Zheng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
- Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan 570000, China
| |
Collapse
|
4
|
Wang Q, Sun Y, Fan R, Wang M, Ren C, Jiang A, Yang T. Role of inflammatory factors in the etiology and treatment of recurrent implantation failure. Reprod Biol 2022; 22:100698. [PMID: 36162310 DOI: 10.1016/j.repbio.2022.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Recurrent implantation failure (RIF) is characterized by the absence of implantation after high-grade embryos are transferred to the endometrium by at least three in vitro fertilization cycles. It is one of the most important factors contributing to reproductive failure. After numerous barriers have been overcome to obtain good-quality embryos, RIF causes extreme distress and frustration in women and couples. In recent years, significant progress has been made in understanding how inflammatory factors, which include pro-inflammatory factors, anti-inflammatory factors, chemokines, and other molecules, contribute to RIF. Immunological abnormalities, hypercoagulability, and reproductive diseases are considered potential causes of RIF. In alloimmune disorders, inflammatory factors can affect the success rate of embryo implantation by altering T helper (Th)1/Th2 and Th17/regulatory T cell ratios and causing imbalances of uterine natural killer cells and macrophages. Autoimmune disorders can also lead to RIF. Inflammatory factors also play key roles in RIF-related disorders such as hypercoagulability, chronic endometritis, adenomyosis, hydrosalpinx, and endometriosis. This review focuses on the roles of inflammatory factors in RIF, including immune factors, blood hypercoagulable states, and reproductive diseases such as chronic endometritis, adenomyosis, hydrosalpinx, and endometriosis. It also summarizes the different treatments according to the causes of RIF and discusses the efficacy of sirolimus, peripheral blood mononuclear cells, low-dose aspirin combined with low-molecular-weight heparin, blocking interleukin-22, and gonadotropin-releasing hormone agonists in the treatment of RIF.
Collapse
Affiliation(s)
- Qian Wang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yujun Sun
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Reiqi Fan
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Mengxue Wang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Chune Ren
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Aifang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Tingting Yang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|