1
|
Gasco R, Worms IAM, Kantarciyan A, Slaveykova VI. Diatom-derived extracellular polymeric substances form eco-corona and enhance stability of silver nanoparticles. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4138-4150. [PMID: 39399660 PMCID: PMC11467845 DOI: 10.1039/d4en00232f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 10/15/2024]
Abstract
Silver nanoparticles (nAg) are extensively used across various fields and are frequently introduced into aquatic environments, where their behavior depends on environmental conditions. Extracellular polymeric substances (EPS) derived from aquatic organisms, such as diatoms, could play an important yet to be explored role in shaping the fate of nAg in aquatic environments. This study investigates the interactions between EPS, particularly those from the diatom Cyclotella meneghiniana, and citrate-coated nAg. The main objective is to understand how EPS influence the behaviours of nAg in freshwater settings, in terms of modulation of the nAg surface properties, colloidal stability and dissolution. To achieve these objectives a combination of the state-of-the-art spectroscopic and imaging techniques was employed. nAg was incubated with EPS isolated from an axenic C. meneghiniana culture, and their interactions were explored in a simulated freshwater environment over both short-term (0-2 h) and long-term (0-72 h) periods. The study focused on the changes in nAg, examining surface modulation, colloidal stability, dissolution, EPS adsorption on nAg, and the resulting eco-corona formation. The results indicate that EPS enhance the colloidal stability of nAg and decrease their dissolution in synthetic freshwater by adsorbing onto their surface and inducing steric repulsion between nAg particles. Visualization of the eco-corona formed by diatom EPS on nAg and its impact on aggregation processes is achieved through transmission electron microscopy. The formation of the EPS corona is attributed to the presence of diverse biopolymers within EPS, particularly proteins and polysaccharides. Fluorescence quenching studies on protein fluorophores demonstrate the formation, through hydrophobic interactions, of protein-nAg complex, further confirmed by AF4-DAD-FLD-ICP-MS. In a broader context, the results of this mechanistic study imply that diatoms, through the release of EPS, may significantly influence the destiny and possibly the bioavailability of nAg in EPS-abundant aquatic environments.
Collapse
Affiliation(s)
- Rocco Gasco
- Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environemntal Biogeochemistry and Ecotoxicology, University of Geneva Bvd Carl-Vogt 66 1211-Geneva Switzerland
| | - Isabelle A M Worms
- Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environemntal Biogeochemistry and Ecotoxicology, University of Geneva Bvd Carl-Vogt 66 1211-Geneva Switzerland
| | - Arin Kantarciyan
- Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environemntal Biogeochemistry and Ecotoxicology, University of Geneva Bvd Carl-Vogt 66 1211-Geneva Switzerland
| | - Vera I Slaveykova
- Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environemntal Biogeochemistry and Ecotoxicology, University of Geneva Bvd Carl-Vogt 66 1211-Geneva Switzerland
| |
Collapse
|
2
|
Kaur J, Khort A, Sadiktsis I, Preethika M, Bird JRT, Barg S, Odnevall I, Fadeel B. Putting advanced materials to the test: Ti 3C 2 MXenes alleviate the hazardous effects of the environmental pollutant benzo[a]pyrene. CHEMOSPHERE 2024; 366:143513. [PMID: 39389371 DOI: 10.1016/j.chemosphere.2024.143513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Advanced materials are materials that have been engineered to exhibit novel or enhanced properties that confer superior performance when compared to conventional materials. Here, we evaluated the impact of Ti3C2 MXenes, a two-dimensional (2D) material, on the adverse effects caused by polycyclic aromatic hydrocarbons. To this end, we studied benzo[a]pyrene denoted here as B[a]P as a model compound. B[a]P was found to adsorb to MXenes as evidenced by UV-Vis spectroscopy. MXenes in the presence or absence of natural organic matter (NOM) were well tolerated by zebrafish embryos. The uptake (ingestion) of MXenes by zebrafish was determined by quantifying the Ti content using inductively coupled plasma mass spectrometry (ICP-MS) while Raman confocal mapping was applied for the label-free identification of MXenes in situ in exposed zebrafish. The body burden of B[a]P was determined by gas chromatography-mass spectrometry (GC-MS). The potential impact of MXenes on B[a]P triggered aryl hydrocarbon receptor (AhR) induction was assessed by evaluating the induction of downstream genes including cyp1a, and results were validated by using the transgenic zebrafish reporter tg(cyp1a-eGFP). The potential impact of MXenes on the genotoxicity caused by B[a]P was also assessed. MXenes were shown to ameliorate AhR induction and DNA damage caused by B[a]P. This was corroborated by using the human colon-derived cell line HT-29. Taken together, MXenes were found to be non-hazardous and alleviated the adverse effects caused by B[a]P in vitro and in vivo.
Collapse
Affiliation(s)
- Jasreen Kaur
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Alexander Khort
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden
| | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Murugan Preethika
- Institute of Materials Resource Management, University of Augsburg, Augsburg, 86135, Germany
| | - James R T Bird
- Department of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Suelen Barg
- Institute of Materials Resource Management, University of Augsburg, Augsburg, 86135, Germany
| | - Inger Odnevall
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden; AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Khort A, Chang T, Hua J, Blomberg E, Cedervall T, Odnevall I. Eco-corona-mediated transformation of nano-sized Y 2O 3 in simulated freshwater: A short-term study. NANOIMPACT 2024; 33:100490. [PMID: 38159885 DOI: 10.1016/j.impact.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The use of metal and metal oxide nanomaterials (NMs) is experiencing a significant surge in popularity due to their distinctive structures and properties, making them highly attractive for a wide range of applications. This increases the risks of their potential negative impact on organisms if dispersed into the environment. Information about their behavior and transformation upon environmental interactions in aquatic settings is limited. In this study, the influence of naturally excreted biomolecules from the zooplankton Daphnia magna on nanosized Y2O3 of different concentrations was systematically examined in synthetic freshwater in terms of adsorption and eco-corona formation, colloidal stability, transformation, dissolution, and ecotoxicity towards D. magna. The formation of an eco-corona on the surface of the Y2O3 NMs leads to improved colloidal stability and a reduced extent of dissolution. Exposure to the Y2O3 NMs lowered the survival probability of D. magna considerably. The ecotoxic potency was slightly reduced by the formation of the eco-corona, though shown to be particle concentration-specific. Overall, the results highlight the importance of systematic mechanistic and fundamental studies of factors that can affect the environmental fate and ecotoxic potency of NMs.
Collapse
Affiliation(s)
- Alexander Khort
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden.
| | - Tingru Chang
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
| | - Jing Hua
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Eva Blomberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
| | - Tommy Cedervall
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska, Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Karolinska Institutet, Department of Neuroscience, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
4
|
Odnevall I, Brookman-Amissah M, Stábile F, Ekvall MT, Herting G, Bermeo Vargas M, Messing ME, Sturve J, Hansson LA, Isaxon C, Rissler J. Characterization and Toxic Potency of Airborne Particles Formed upon Waste from Electrical and Electronic Equipment Waste Recycling: A Case Study. ACS ENVIRONMENTAL AU 2023; 3:370-382. [PMID: 38028743 PMCID: PMC10655593 DOI: 10.1021/acsenvironau.3c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Manual dismantling, shredding, and mechanical grinding of waste from electrical and electronic equipment (WEEE) at recycling facilities inevitably lead to the accidental formation and release of both coarse and fine particle aerosols, primarily into the ambient air. Since diffuse emissions to air of such WEEE particles are not regulated, their dispersion from the recycling plants into the adjacent environment is possible. The aim of this interdisciplinary project was to collect and characterize airborne WEEE particles smaller than 1 μm generated at a Nordic open waste recycling facility from a particle concentration, shape, and bulk and surface composition perspective. Since dispersed airborne particles eventually may reach rivers, lakes, and possibly oceans, the aim was also to assess whether such particles may pose any adverse effects on aquatic organisms. The results show that WEEE particles only exerted a weak tendency toward cytotoxic effects on fish gill cell lines, although the exposure resulted in ROS formation that may induce adverse effects. On the contrary, the WEEE particles were toxic toward the crustacean zooplankter Daphnia magna, showing strong effects on survival of the animals in a concentration-dependent way.
Collapse
Affiliation(s)
- Inger Odnevall
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- AIMES−Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institute and KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department
of Neuroscience, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Marianne Brookman-Amissah
- Department
of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Franca Stábile
- Department
of Biology, Aquatic Ecology, Lund University, SE-223 62 Lund, Sweden
| | - Mikael T. Ekvall
- Department
of Biology, Aquatic Ecology, Lund University, SE-223 62 Lund, Sweden
- NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Gunilla Herting
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Marie Bermeo Vargas
- Solid
State Physics, Lund University, Box 118, 221 00 Lund, Sweden
- NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Maria E. Messing
- Solid
State Physics, Lund University, Box 118, 221 00 Lund, Sweden
- NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Joachim Sturve
- Department
of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Lars-Anders Hansson
- Department
of Biology, Aquatic Ecology, Lund University, SE-223 62 Lund, Sweden
| | - Christina Isaxon
- Ergonomics
and Aerosol Technology, Lund University, SE-221 00 Lund, Sweden
- NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Jenny Rissler
- Ergonomics
and Aerosol Technology, Lund University, SE-221 00 Lund, Sweden
- Bioeconomy
and Health, RISE Research Institutes of
Sweden, SE-223 70 Lund, Sweden
- NanoLund, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
5
|
Duc Phung L, Dhewi Afriani S, Aditya Padma Pertiwi P, Ito H, Kumar A, Watanabe T. Effects of CuO nanoparticles in composted sewage sludge on rice-soil systems and their potential human health risks. CHEMOSPHERE 2023; 338:139555. [PMID: 37487974 DOI: 10.1016/j.chemosphere.2023.139555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
The release of metal-based nanoparticles (MNPs) into sewage systems is worrisome due to their potential impact on crop-soil systems that are amended with sewage sludge. This study aimed to investigate the effects of copper oxide nanoparticles (CuO NPs) in composted sewage sludge (CSS) on rice-soil systems and to assess the health risks associated with consuming CuO NP-contaminated rice produced by CSS amendment. CSS was treated with three doses of CuO NPs, resulting in Cu levels below the sludge limits (1500 mg Cu kg-1) for reuse as a soil amendment. Results showed that CuO NPs in CSS at environmentally acceptable levels had no negative effect on rice growth and yield. In fact, they enhanced biomass production, tillering capacity, and soil fertility by increasing N and K levels in the soil. In addition, CuO NPs in CSS (450-1450 mg Cu kg-1) promoted the accumulation of macro- and micro-minerals in rice grains, thereby improving the nutritional value of rice. However, Cu contamination in CSS led to elevated levels of toxic metals, especially As, in rice grains, posing potential health risks to both adults and children. In the presence of higher CuO NPs contamination in CSS, the hazard quotient of As exceeded one, indicating an increased risks of toxic metal exposure via rice consumption. This study raises concerns about potential long-term threats to human health posed by MNPs contamination in CSS and highlights the need to reevaluate the permissible limits of hazardous elements in sludge to ensure its safe reuse in agriculture.
Collapse
Affiliation(s)
- Luc Duc Phung
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan; Center for Foreign Languages and International Education, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, 12406, Viet Nam.
| | - Shinta Dhewi Afriani
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Putri Aditya Padma Pertiwi
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Hiroaki Ito
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|
6
|
Kelpsiene E, Chang T, Khort A, Bernfur K, Odnevall I, Cedervall T, Hua J. The effect of natural biomolecules on yttrium oxide nanoparticles from a Daphnia magna survival rate perspective. Nanotoxicology 2023:1-15. [PMID: 37428876 DOI: 10.1080/17435390.2023.2226712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
The attention to rare earth oxide nanoparticles (NPs), including yttrium oxide (Y2O3), has increased in many fields due to their unique structural characteristics and functional properties. The aim of our study was to investigate the mechanisms by which bio-corona formation on Y2O3 NPs affects their environmental fate and toxicity. The Y2O3 NPs induced toxicity to freshwater filter feeder Daphnia magna at particle concentrations of 1 and 10 mg/L, regardless of particle size. Interactions between naturally excreted biomolecules (e.g. protein, lipids, and polysaccharides) derived from D. magna, and the Y2O3 NPs (30-45 nm) resulted in the formation of an eco-corona, which reduced their toxic effects toward D. magna at a particle concentration of 10 mg/L. No effects were observed at lower concentrations or for the other particle sizes investigated. Copper-zinc (Cu-Zn) superoxide dismutase, apolipophorins, and vitellogenin-1 proteins proved to be the most prominent proteins of the adsorbed corona, and possibly a reason for the reduced toxicity of the 30-45 nm Y2O3 NPs toward D. magna.
Collapse
Affiliation(s)
- Egle Kelpsiene
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Tingru Chang
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Aliaksandr Khort
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
| | - Inger Odnevall
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tommy Cedervall
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Jing Hua
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Chang T, Khort A, Saeed A, Blomberg E, Nielsen MB, Hansen SF, Odnevall I. Effects of interactions between natural organic matter and aquatic organism degradation products on the transformation and dissolution of cobalt and nickel-based nanoparticles in synthetic freshwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130586. [PMID: 37055991 DOI: 10.1016/j.jhazmat.2022.130586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Expanding applications and production of engineered nanoparticles lead to an increased risk for their environmental dispersion. Systematic knowledge of surface transformation and dissolution of nanoparticles is essential for risk assessment and regulation establishment. Such aspects of Co- and Ni-based nanoparticles including metals, oxides, and solution combustion synthesized metal nanoparticles (metal cores with carbon shells) were investigated upon environmental interaction with organic matter, simulated by natural organic matter (NOM) and degradation products from zooplankton and algae (eco-corona biomolecules, EC) in freshwater (FW). The presence of NOM and EC in FW results in negative surface charges of the nanoparticles reduces the extent of nanoparticles agglomeration, and increases concentration, mainly due to the surface adsorption of carboxylate groups of the organic matter. The dissolution of the Co-based nanoparticles was for all conditions (FW, FW with NOM or EC) higher than the Ni-based, except for Co3O4 being nearly non-soluble. The surface transformation and dissolution of nanoparticles are highly exposure and time-dependent, and surface- and environment specific. Therefore, no general correlation was observed between dissolution and, particle types, surface conditions, or EC/NOM adsorption. This underlines the importance of thorough investigations of nanoparticles adsorption/desorption, degradation, and exposure scenarios for developing regulatory relevant protocols and guidelines.
Collapse
Affiliation(s)
- Tingru Chang
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden
| | - Alexander Khort
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden
| | - Anher Saeed
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden
| | - Eva Blomberg
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden
| | - Maria Bille Nielsen
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Steffen Foss Hansen
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Inger Odnevall
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska, Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Karolinska Institutet, Department of Neuroscience, SE-171 77 Stockholm, Sweden.
| |
Collapse
|