1
|
Perfileva AI, Sukhov BG, Kon'kova TV, Strekalovskaya EI, Krutovsky KV. Diversity of copper-containing nanoparticles and their influence on plant growth and development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109575. [PMID: 39893945 DOI: 10.1016/j.plaphy.2025.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Copper (Cu) is an important microelement for plants, but in high concentrations it can be toxic. Cu-containing nanoparticles (Cu NPs) are less toxic, their use for plants is safer, more effective and economical than the use of Cu salts. This review presents detailed information on the chemical diversity of Cu NPs and various methods of their synthesis. The mechanisms of the effect of Cu NPs on plants are described in detail, and examples of research in this area are given. The main effects of Cu NPs on plants are reviewed including on their growth and development (organogenesis, mitosis, accumulation of biomass), biochemical processes (intensity of photosynthesis, antioxidant status and intensity of lipid peroxidation processes), gene expression, plant resistance to abiotic and biotic stress factors. The prospects of using Cu NPs as mineral fertilizers are shown by describing their stimulation effects on seed germination, plant growth and development, and on increase of plant resistance to stress factors. The protective effect of Cu NPs is often explained by their antioxidant activity. At the same time, there are a number of studies demonstrating the negative impact of Cu NPs on plant growth, development and the intensity of photosynthesis, depending on their concentration. Cu NPs have a pronounced antibacterial effect on bacterial phytopathogens of cultivated plants, as well as on a number of phytopathogenic fungi and nematodes. Thus, Cu NPs are promising agents for agriculture, while their effect on plants requires careful selection of optimal concentrations and comprehensive studies to avoid a toxic effect.
Collapse
Affiliation(s)
- A I Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia.
| | - B G Sukhov
- Laboratory of Nanoparticles, V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | - T V Kon'kova
- Laboratory of Nanoparticles, V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | - E I Strekalovskaya
- Laboratory of Environmental Biotechnology, A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia.
| | - K V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany; Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany; Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333, Moscow, Russia; Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia; Scientific and Methodological Center, G.F. Morozov Voronezh State University of Forestry and Technologies, Timiryazeva Str. 8, 394036, Voronezh, Russia.
| |
Collapse
|
2
|
Carrillo-Lopez LM, Villanueva-Verduzco C, Villanueva-Sánchez E, Fajardo-Franco ML, Aguilar-Tlatelpa M, Ventura-Aguilar RI, Soto-Hernández RM. Nanomaterials for Plant Disease Diagnosis and Treatment: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2634. [PMID: 39339607 PMCID: PMC11434773 DOI: 10.3390/plants13182634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Currently, the excessive use of pesticides has generated environmental pollution and harmful effects on human health. The controlled release of active ingredients through the use of nanomaterials (NMs) appears to reduce human exposure and ecosystem alteration. Although the use of NMs can offer an alternative to traditional methods of disease diagnosis and control, it is necessary to review the current approach to the application of these NMs. This review describes the most recent and significant advances in using NMs for diagnosing and treating plant diseases (bacteria, phytopathogenic fungi, viruses, and phytopathogenic nematodes) in cultivated plants. Most studies have focused on reducing, delaying, or eliminating bacteria, fungi, viruses, and nematodes in plants. Both metallic (including metal oxides) and organic nanoparticles (NPs) and composites are widely used in diagnosing and controlling plant diseases due to their biocompatibility and ease of synthesis. Few studies have been carried out with regard to carbon-based NPs due to their toxicity, so future studies should address the development of detection tools, ecological and economic impacts, and human health. The synergistic effect of NMs as fertilizers and pesticides opens new areas of knowledge on the mechanisms of action (plant-pathogen-NMs interaction), the interaction of NMs with nutrients, the effects on plant metabolism, and the traceability of NMs to implement sustainable approaches. More studies are needed involving in vivo models under international regulations to ensure their safety. There is still controversy in the release of NMs into the environment because they could threaten the stability and functioning of biological systems, so research in this area needs to be improved.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Botánica, Colegio de Postgraduados Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Clemente Villanueva-Verduzco
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Evert Villanueva-Sánchez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Marja L Fajardo-Franco
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Martín Aguilar-Tlatelpa
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Rosa I Ventura-Aguilar
- CONAHCYT-Recursos Genéticos y Productividad-Fruticultura, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Ramón Marcos Soto-Hernández
- Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| |
Collapse
|
3
|
Elenany AM, Atia MMM, Abbas EEA, Moustafa M, Alshaharni MO, Negm S, Elnahal ASMA. Nanoparticles and Chemical Inducers: A Sustainable Shield against Onion White Rot. BIOLOGY 2024; 13:219. [PMID: 38666831 PMCID: PMC11048201 DOI: 10.3390/biology13040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
This study investigated the effectiveness of nanoparticles and chemical inducers in managing onion white rot caused by Sclerotium cepivorum. The pathogen severely threatens onion cultivation, resulting in significant yield losses and economic setbacks. Traditional fungicides, though effective, raise environmental concerns, prompting a shift toward eco-friendly alternatives. In this study, four S. cepivorum isolates were utilized, each exhibiting varying degrees of pathogenicity, with the third isolate from Abu-Hamad demonstrating the highest potency. During the in vitro studies, three nanoparticles (NPs) were investigated, including Fe3O4 NPs, Cu NPs, and ZnO NPs, which demonstrated the potential to inhibit mycelial growth, with salicylic acid and Fe3O4 NPs exhibiting synergistic effects. In vivo, these nanoparticles reduced the disease incidence and severity, with Fe3O4 NPs at 1000-1400 ppm resulting in 65.0-80.0% incidence and 80.0-90.0% severity. ZnO NPs had the most positive impact on the chlorophyll content, while Cu NPs had minimal effects. At 1000 ppm, Fe3O4 NPs had variable effects on the phenolic compounds (total: 6.28, free: 4.81, related: 2.59), while ZnO NPs caused minor fluctuations (total: 3.60, free: 1.82, related: 1.73). For the chemical inducers, salicylic acid reduced the disease (10.0% incidence, 25.0% to 10.0% severity) and promoted growth, and it elevated the chlorophyll values and enhanced the phenolic compounds in infected onions. Potassium phosphate dibasic (PDP) had mixed effects, and ascorbic acid showed limited efficacy toward disease reduction. However, PDP at 1400 ppm and ascorbic acid at 1000 ppm elevated the chlorophyll values and enhanced the phenolic compounds. Furthermore, this study extended to traditional fungicides, highlighting their inhibitory effects on S. cepivorum. This research provides a comprehensive comparative analysis of these approaches, emphasizing their potential in eco-friendly onion white rot management.
Collapse
Affiliation(s)
- Ahmed Mohammed Elenany
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | | | - Entsar E. A. Abbas
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed O. Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
4
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Moustakas M, Dendrinou-Samara C. Impact of Coated Zinc Oxide Nanoparticles on Photosystem II of Tomato Plants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5846. [PMID: 37687539 PMCID: PMC10488754 DOI: 10.3390/ma16175846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L-1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 μmol photons m-2 s-1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Xie J, Li H, Zhang T, Song B, Wang X, Gu Z. Recent Advances in ZnO Nanomaterial-Mediated Biological Applications and Action Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091500. [PMID: 37177043 PMCID: PMC10180283 DOI: 10.3390/nano13091500] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
In recent years, with the deepening research, metal zinc oxide (ZnO) nanomaterials have become a popular research object in the biological field, particularly in biomedicine and food safety, which is attributed to their unique physicochemical properties such as high surface area and volume ratio, luminescence effect, surface characteristics and biological activities. Herein, this review provides a detailed overview of the ZnO nanomaterial-mediated biological applications that involve anti-bacterial, anti-tumor, anti-inflammation, skin care, biological imaging and food packaging applications. Importantly, the corresponding action mechanisms of ZnO nanomaterials are pointed. Additionally, the structure and structure-dependent physicochemical properties, the common synthesis methods and the biosafety of ZnO nanoparticles are revealed in brief. Finally, the significance and future challenges of ZnO nanomaterial applications are concluded.
Collapse
Affiliation(s)
- Jiani Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Huilun Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Clinical Medical College, Chengdu University, Chengdu 610106, China
| | - Tairan Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bokai Song
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinhui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kanakari E, Dendrinou-Samara C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2388. [PMID: 36984268 PMCID: PMC10052108 DOI: 10.3390/ma16062388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The development of effective and ecofriendly agrochemicals, including bactericides, fungicides, insecticides, and nematicides, to control pests and prevent plant diseases remains a key challenge. Nanotechnology has provided opportunities for the use of nanomaterials as components in the development of anti-phytopathogenic agents. Indeed, inorganic-based nanoparticles (INPs) are among the promising ones. They may play an effective role in targeting and killing microbes via diverse mechanisms, such as deposition on the microbe surface, destabilization of cell walls and membranes by released metal ions, and the induction of a toxic mechanism mediated by the production of reactive oxygen species. Considering the lack of new agrochemicals with novel mechanisms of action, it is of particular interest to determine and precisely depict which types of INPs are able to induce antimicrobial activity with no phytotoxicity effects, and which microbe species are affected. Therefore, this review aims to provide an update on the latest advances in research focusing on the study of several types of engineered INPs, that are well characterized (size, shape, composition, and surface features) and show promising reactivity against assorted species (bacteria, fungus, virus). Since effective strategies for plant protection and plant disease management are urgently needed, INPs can be an excellent alternative to chemical agrochemical agents as indicated by the present studies.
Collapse
|
7
|
Tryfon P, Kamou NN, Pavlou A, Mourdikoudis S, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Nanocapsules of ZnO Nanorods and Geraniol as a Novel Mean for the Effective Control of Botrytis cinerea in Tomato and Cucumber Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1074. [PMID: 36903940 PMCID: PMC10005723 DOI: 10.3390/plants12051074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Inorganic-based nanoparticle formulations of bioactive compounds are a promising nanoscale application that allow agrochemicals to be entrapped and/or encapsulated, enabling gradual and targeted delivery of their active ingredients. In this context, hydrophobic ZnO@OAm nanorods (NRs) were firstly synthesized and characterized via physicochemical techniques and then encapsulated within the biodegradable and biocompatible sodium dodecyl sulfate (SDS), either separately (ZnO NCs) or in combination with geraniol in the effective ratios of 1:1 (ZnOGer1 NCs), 1:2 (ZnOGer2 NCs), and 1:3 (ZnOGer2 NCs), respectively. The mean hydrodynamic size, polydispersity index (PDI), and ζ-potential of the nanocapsules were determined at different pH values. The efficiency of encapsulation (EE, %) and loading capacity (LC, %) of NCs were also determined. Pharmacokinetics of ZnOGer1 NCs and ZnOGer2 NCs showed a sustainable release profile of geraniol over 96 h and a higher stability at 25 ± 0.5 °C rather than at 35 ± 0.5 °C. ZnOGer1 NCs, ZnOGer2 NCs and ZnO NCs were evaluated in vitro against B. cinerea, and EC50 values were calculated at 176 μg/mL, 150 μg/mL, and > 500 μg/mL, respectively. Subsequently, ZnOGer1 NCs and ZnOGer2 NCs were tested by foliar application on B. cinerea-inoculated tomato and cucumber plants, showing a significant reduction of disease severity. The foliar application of both NCs resulted in more effective inhibition of the pathogen in the infected cucumber plants as compared to the treatment with the chemical fungicide Luna Sensation SC. In contrast, tomato plants treated with ZnOGer2 NCs demonstrated a better inhibition of the disease as compared to the treatment with ZnOGer1 NCs and Luna. None of the treatments caused phytotoxic effects. These results support the potential for the use of the specific NCs as plant protection agents against B. cinerea in agriculture as an effective alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nathalie N. Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Akrivi Pavlou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|