1
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03462-4. [PMID: 39392484 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery-A Confluence of Tradition and Innovation. Int J Mol Sci 2024; 25:8792. [PMID: 39201478 PMCID: PMC11354359 DOI: 10.3390/ijms25168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.
Collapse
Affiliation(s)
- Patience Chihomvu
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - A. Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz 616, Oman;
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK;
| | - Martin A. Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
3
|
Sabarathinam S, Satheesh S, Raja A. A computer-aided insight into the identification of significant therapeutic flavone as a promising agent for sarcopenic obesity. Nat Prod Res 2024; 38:2091-2096. [PMID: 37436875 DOI: 10.1080/14786419.2023.2232928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Polyphenols, the important secondary metabolites, consist of multiple phytochemicals and show numerous physiological effects. Flavones play a significant role in various chronic disorders such as diabetes.. In this study, all the flavones were encountered, and it was further filtered based on their drug-likeness properties and pharmacokinetic parameters. Existing literature confirms that flavone-based compounds are suitable as the drug of choice in sarcopenic obesity. A molecular docking study was performed toward the myostatin inhibition profile of the flavones using PDB:3HH2 as a target site. This computer-aided drug design helps select lead molecules in novel drug discovery.
Collapse
Affiliation(s)
- Sarvesh Sabarathinam
- Drug Testing Laboratory, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Clinical Trial Unit, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Sanjana Satheesh
- Department of Biotechnology, Birla Institute of Technology and Science, Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Arun Raja
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, India
| |
Collapse
|
4
|
Uncovering of Anti-dengue Molecules from Plants Prescribed for Dengue: A Computational Investigation. CHEMISTRY AFRICA 2022. [PMCID: PMC9281232 DOI: 10.1007/s42250-022-00421-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Dengue fever is a tropical disease spread worldwide, transmitted by the mosquito Aedes aegypti. It affects 100 million people worldwide every year and half a million cases of dengue hemorrhagic fever are registered. At present, it poses sever health burden as combined infections of COVID-19. Currently, as a combined infection with COVID-19, it is becoming a serious health burden. To identify the active molecule, Maestro V12.7 was used with different tools including LigPrep, Grid Generation, SiteMap, Glide XP Docking, Pharmachophores and MM-GBSA. The UNRESS tool was also used to assess the protein stability with this dengue protein. The docking result showed that all examined phytocomponents except berberine and -(+)-l-alliin had good docking scores of -8.577 (azadirachtin), -8.112 (curcumin), -7.348 (apigenin) and -6.028 (andrographolide). However, berberine and -(+)-l-alliin possessed good hydrogen-bonding interactions with RdRp. In addition, molecular dynamic simulations demonstrate that the complex of azadirachtin and dengue protein has a solid understanding of the precise interactions. As per the research results, the present research suggests that this is the first statement of azadirachtin against NS5 RNA-dependent RNA polymerase domain (RdRp), despite extensive research on this molecule in previous investigations. Furthermore, we anticipate that molecules such as curcumin, apigenin, and andrographolide would show beneficial effects while in vitro and in vivo studies are conducted on virally related objects. Since we performed ADMET and pharmacokinetic properties in this research, we feel that the phytochemicals of the screened anti-dengue molecules may not need to be evaluated for toxicological effects.
Collapse
|
5
|
Kalaimathi K, Rani JMJ, Vijayakumar S, Prakash N, Karthikeyan K, Thiyagarajan G, Bhavani K, Prabhu S, Varatharaju G. Anti-dengue Potential of Mangiferin: Intricate Network of Dengue to Human Genes. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 32:410-420. [PMID: 35572718 PMCID: PMC9078210 DOI: 10.1007/s43450-022-00258-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/14/2022] [Indexed: 11/21/2022]
Abstract
Dengue fever has become one of the deadliest infectious diseases and requires the development of effective antiviral therapies. It is caused by members of the Flaviviridae family, which also cause various infections in humans, including dengue fever, tick-borne encephalitis, West Nile fever, and yellow fever. In addition, since 2019, dengue-endemic regions have been grappling with the public health and socio-economic impact of the ongoing coronavirus disease 19. Co-infections of coronavirus and dengue fever cause serious health complications for people who also have difficulty managing them. To identify the potentials of mangiferin, a molecular docking with various dengue virus proteins was performed. In addition, to understand the gene interactions between human and dengue genes, Cytoscape was used in this research. The Kyoto Encyclopedia of Genes and Genomes software was used to find the paths of Flaviviridae. The Kyoto Encyclopedia of Genes and Genomes and the Reactome Pathway Library were used to understand the biochemical processes involved. The present results show that mangiferin shows efficient docking scores and that it has good binding affinities with all docked proteins. The exact biological functions of type I interferon, such as interferon-α and interferon-β, were also shown in detail through the enrichment analysis of the signaling pathway. According to the docking results, it was concluded that mangiferin could be an effective drug against the complications of dengue virus 1, dengue virus 3, and non-structural protein 5. In addition, computational biological studies lead to the discovery of a new antiviral bioactive molecule and also to a deeper understanding of viral replication in the human body. Ultimately, the current research will be an important resource for those looking to use mangiferin as an anti-dengue drug.
Collapse
|
6
|
Prabhu S, Vijayakumar S, Praseetha P. Cyanobacterial metabolites as novel drug candidates in corona viral therapies: A review. Chronic Dis Transl Med 2022; 8:172-183. [PMID: 35572950 PMCID: PMC9086949 DOI: 10.1002/cdt3.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
Most of the medical and nonmedical research labs, all around the world, are racing against time to produce an effective vaccine or an antiviral medicine for coronavirus disease 2019 (COVID‐19). Conventional medicines and novel nano‐materials including chemical and herbal‐based compounds are all into positive trials toward coronaviruses and other pandemic infections. Among them, natural immune boosters have attracted physicians because of their longevity and reliability for fewer side effects. This is a review article with a detailed picture of an unexplored antiviral source with maximum potency in curing viral infections. Cyanobacteriae have been known for centuries and are rich in secondary metabolites of proteins, biopeptides, and polysaccharides for prominent antiviral action against chest infections. But detailed exploratory research is required to purify, scale‐up, and commercialize the pharmacologically active agents from these drug reserves.
Collapse
Affiliation(s)
- Srinivasan Prabhu
- Department of Botany Annai Vailankanni Arts and Science College Thanjavur Tamil Nadu India
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Subramaniyan Vijayakumar
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Pabakaran Praseetha
- Department of Nanotechnology Noorul Islam Centre for Higher Education Kumaracoil Tamil Nadu India
| |
Collapse
|
7
|
Rani JMJ, Kalaimathi K, Vijayakumar S, Varatharaju G, Karthikeyan K, Thiyagarajan G, Bhavani K, Manogar P, Prabhu S. Anti-viral effectuality of plant polyphenols against mutated dengue protein NS2B47-NS3: A computational exploration. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Zalegh I, Akssira M, Bourhia M, Mellouki F, Rhallabi N, Salamatullah AM, Alkaltham MS, Khalil Alyahya H, Mhand RA. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1214. [PMID: 34203720 PMCID: PMC8232106 DOI: 10.3390/plants10061214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Resistance to drugs is reaching alarming levels and is placing human health at risk. With the lack of new antimicrobials drugs, infectious diseases are becoming harder to treat. Hence, there is an increasing awareness of active phytochemicals with therapeutic functions. The tremendous research interest on the Cistus L. genus includes numerous plants used in traditional medicine by people living around the Mediterranean Sea, also resulted in some interesting discoveries and written literature. This review aimed at gathering scientific literature about Cistus species, describing phytochemical profiles and the various pharmacological activities. We also extensively reviewed the antimicrobial activities, including antiviral, antiparasitic, antifungal, and antibacterial potentials of Essential Oils (EO), raw extracts as well as isolated compounds. Mechanisms of action along with methods used are also investigated in this review. Considering the findings of the Cistus species extracts, this genus offers an adequate reserve of active phytochemicals since many have been used to create drugs. Therefore, this review work can serve society by providing a global view on Cistus L. sp. regarding pharmacological potentials and their chemical profiles.
Collapse
Affiliation(s)
- Imane Zalegh
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Research Unit Associated CNRST (URAC 22), FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco;
| | - Mohamed Akssira
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Research Unit Associated CNRST (URAC 22), FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco;
| | - Mohammed Bourhia
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco;
| | - Fouad Mellouki
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| | - Naima Rhallabi
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Mohammed Saeed Alkaltham
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Heba Khalil Alyahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Rajaa Ait Mhand
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| |
Collapse
|
9
|
Khan DA, Hamdani SDA, Iftikhar S, Malik SZ, Zaidi NUSS, Gul A, Babar MM, Ozturk M, Turkyilmaz Unal B, Gonenc T. Pharmacoinformatics approaches in the discovery of drug-like antimicrobials of plant origin. J Biomol Struct Dyn 2021; 40:7612-7628. [PMID: 33663347 DOI: 10.1080/07391102.2021.1894982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Medicinal plants have served as an important source for addressing the ailments of humans and animals alike. The emergence of advanced technologies in the field of drug discovery and development has helped in isolating various bioactive phytochemicals and developing them as drugs. Owing to their significant pharmacological benefits and minimum adverse effects, they not only serve as good candidates for therapeutics themselves but also help in the identification and development of related drug like molecules against various metabolic and infectious diseases. The ever-increasing diversity, severity and incidence of infectious diseases has resulted in an exaggerated mortality and morbidity levels. Geno-proteomic mutations in microbes, irrational prescribing of antibiotics, antimicrobial resistance and human population explosion, all call for continuous efforts to discover and develop alternated therapeutic options against the microbes. This review article describes the pharmacoinformatics tools and methods which are currently used in the discovery of bioactive phytochemicals, thus making the process more efficient and effective. The pharmacological aspects of the drug discovery and development process have also been reviewed with reference to the in silico activities. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duaa Ahmad Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sahar Iftikhar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us-Sahar Sadaf Zaidi
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Arts & Sciences Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Tuba Gonenc
- Department of Pharmacognosy, Faculty of Pharmacy, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
10
|
Roy H, Nandi S. In-Silico Modeling in Drug Metabolism and Interaction: Current Strategies of Lead Discovery. Curr Pharm Des 2020; 25:3292-3305. [PMID: 31481001 DOI: 10.2174/1381612825666190903155935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Drug metabolism is a complex mechanism of human body systems to detoxify foreign particles, chemicals, and drugs through bio alterations. It involves many biochemical reactions carried out by invivo enzyme systems present in the liver, kidney, intestine, lungs, and plasma. After drug administration, it crosses several biological membranes to reach into the target site for binding and produces the therapeutic response. After that, it may undergo detoxification and excretion to get rid of the biological systems. Most of the drugs and its metabolites are excreted through kidney via urination. Some drugs and their metabolites enter into intestinal mucosa and excrete through feces. Few of the drugs enter into hepatic circulation where they go into the intestinal tract. The drug leaves the liver via the bile duct and is excreted through feces. Therefore, the study of total methodology of drug biotransformation and interactions with various targets is costly. METHODS To minimize time and cost, in-silico algorithms have been utilized for lead-like drug discovery. Insilico modeling is the process where a computer model with a suitable algorithm is developed to perform a controlled experiment. It involves the combination of both in-vivo and in-vitro experimentation with virtual trials, eliminating the non-significant variables from a large number of variable parameters. Whereas, the major challenge for the experimenter is the selection and validation of the preferred model, as well as precise simulation in real physiological status. RESULTS The present review discussed the application of in-silico models to predict absorption, distribution, metabolism, and excretion (ADME) properties of drug molecules and also access the net rate of metabolism of a compound. CONCLUSION It helps with the identification of enzyme isoforms; which are likely to metabolize a compound, as well as the concentration dependence of metabolism and the identification of expected metabolites. In terms of drug-drug interactions (DDIs), models have been described for the inhibition of metabolism of one compound by another, and for the compound-dependent induction of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Harekrishna Roy
- Nirmala College of Pharmacy, Mangalagiri, Guntur, Affiliated to Acharya Nagarjuna University, Andhra Pradesh-522503, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
11
|
Manogar P, Vijayakumar S, Praseetha P. Evaluation of antioxidant and neuroprotective activities of Lyngbya majuscula on human neural tissues. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Mazumder MK, Borah A, Choudhury S. Inhibitory potential of plant secondary metabolites on anti-Parkinsonian drug targets: Relevance to pathophysiology, and motor and non-motor behavioural abnormalities. Med Hypotheses 2020; 137:109544. [PMID: 31954292 DOI: 10.1016/j.mehy.2019.109544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/29/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative motor disorder, is caused due to the loss of dopaminergic neurons in the substantia nigra pars compacta region of mid-brain and the resultant depletion of the levels of the neurotransmitter dopamine. Although the pathophysiology of the disease is least understood, studies in animal models revealed oxidative stress, mitochondrial dysfunction and inflammation to be the major contributors. Dopamine replenishment therapy by oral administration of L-DOPA, the precursor of dopamine remains to be the therapeutic gold-standard for symptomatic treatment of PD. In addition, use of inhibitors of dopamine metabolizing enzymes (viz. monoamine oxidase-B: MAO-B; and catechol-O-methyltransferase: COMT) are the other strategies for amelioration of the motor abnormalities. Further, PD is associated with non-motor behavioural abnormalities as well, including cognitive impairment and mood disorders, which are caused due to cholinergic neurodegeneration, and thus inhibition of Acetylcholinesterase (AChE) is suggested. However, the currently used drugs against the three crucial enzymes (MAO-B, COMT and AChE) elicit several side effects, and thus the search for novel compounds continues, and plant-based compounds have promising potential in this regard. In the present study, we have used computational modeling to determine the efficiency of 40 plant-based natural products in inhibiting the three anti-Parkinsonian drug targets. Further, statistical analysis was performed to identify the properties of the compounds which are crucial for inhibition of the enzymes. While all the phytochemicals showed potential in inhibiting the enzymes, Rutin, Demethoxycurcumin and Acteoside were found to be most effective inhibitors of MAO-B, COMT and AChE respectively. Since most of the compounds are established anti-oxidant and anti-inflammatory molecules, they are surmised to confer neuroprotection in PD, and prevent progression of the disease.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Central Instrumentation Laboratory, Assam University, Silchar 788011, Assam, India; Department of Zoology, Dhemaji College, Dhemaji 787057, Assam, India.
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Shuvasish Choudhury
- Central Instrumentation Laboratory, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
13
|
Neuroprotective behaviour of Phyllanthus emblica (L) on human neural cell lineage (PC12) against glutamate-induced cytotoxicity. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Ramalingam M, Kim H, Lee Y, Lee YI. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Front Aging Neurosci 2018; 10:348. [PMID: 30443212 PMCID: PMC6221911 DOI: 10.3389/fnagi.2018.00348] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023] Open
Abstract
The increasing lifespan in developed countries results in age-associated chronic diseases. Biological aging is a complex process associated with accumulated cellular damage by environmental or genetic factors with increasing age. Aging results in marked changes in brain structure and function. Age-related neurodegenerative diseases and disorders (NDDs) represent an ever-growing socioeconomic challenge and lead to an overall reduction in quality of life around the world. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are most common degenerative neurological disorders of the central nervous system (CNS) in aging process. The low levels of acetylcholine and dopamine are major neuropathological feature of NDDs in addition to oxidative stress, intracellular calcium ion imbalance, mitochondrial dysfunction, ubiquitin-proteasome system impairment and endoplasmic reticulum stress. Current treatments minimally influence these diseases and are ineffective in curing the multifunctional pathological mechanisms. Synthetic neuroprotective agents sometimes have negative reactions as an adverse effect in humans. Recently, numerous ethnobotanical studies have reported that herbal medicines for the treatment or prevention of NDDs are significantly better than synthetic drug treatment. Medicinal herbs have traditionally been used around the world for centuries. Radix Glycyrrhizae (RG) is the dried roots and rhizomes of Glycyrrhiza uralensis or G. glabra or G. inflata from the Leguminosae/Fabaceae family. It has been used for centuries in traditional medicine as a life enhancer, for the treatment of coughs and influenza, and for detoxification. Diverse chemical constituents from RG have reported including flavanones, chalcones, triterpenoid saponins, coumarines, and other glycosides. Among them, flavanone liquiritigenin (LG) and its precursor and isomer chalcone isoliquiritigenin (ILG) are the main bioactive constituents of RG. In the present review, we summarize evidence in the literature on the structure and phytochemical properties and pharmacological applications of LG and ILG in age-related diseases to establish new therapeutics to improve human health and lifespan.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.,Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
15
|
Ribaudo G, Zanforlin E, Canton M, Bova S, Zagotto G. Preliminary studies of berberine and its semi-synthetic derivatives as a promising class of multi-target anti-parkinson agents. Nat Prod Res 2017; 32:1395-1401. [PMID: 28691859 DOI: 10.1080/14786419.2017.1350669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder bearing motor and nonmotor symptoms. The treatment today is symptomatical rather than preventive or curative and this leaves the field open for the search of both novel molecular targets and drug candidates. Interference with α-synuclein fibrillation, monoamine oxidase (MAO) inhibition, modulation of adenosine receptors and the inhibition of specific phosphodiesterase (PDE) isoforms are some of the currently pursued strategies. We synthesised and studied some semi-synthetic berberine derivatives using a set of in silico tools. We evaluated their drug-likeness and tested the compounds against a set of target proteins involved in the onset or progression of PD, with a particular attention to MAO-B. Preliminary in vitro assay on MAO-B confirmed our in silico predictions.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- a Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| | - Enrico Zanforlin
- a Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| | - Marcella Canton
- b Department of Biomedical Science , University of Padova , Padova , Italy.,c Venetian Institute of Molecular Medicine (VIMM) , Padova , Italy
| | - Sergio Bova
- a Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| | - Giuseppe Zagotto
- a Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| |
Collapse
|