1
|
Naresh Patel K, Ashoka K, Park C, Shanmukha M, Azeem M. Disease categorization with clinical data using optimized bat algorithm and fuzzy value. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-222749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diagnosis of human disease is a more difficult and complex process since it requires the consideration of various factors and symptoms to make a decision. Generally, the classification of diseases with fuzzy values is the most interesting topic because of accurate results. In this paper, we design a Bat-based Random Forest (BbRF) framework to enhance the performance of categorizing diseases with fuzzy values which also protect the privacy of the developed scheme. It involves pre-processing, attributes selection, fuzzy value generation, and classification. Additionally, the developed framework is implemented in Python tool and patient disease datasets are used for implementation. Moreover, pre-processing remove the error and noise, attributes are selected based on the duration of diseases. Finally, classify the patient disease based on the generated fuzzy value. To prove the efficiency of the developed framework, attained results are compared with other existing techniques in terms of accuracy, sensitivity, specificity, F-measure, and precision.
Collapse
Affiliation(s)
- K.M. Naresh Patel
- Department of Computer Science & Engineering, Bapuji Institute of Engineering & Technology, Davangere, Karnataka, India
| | - K. Ashoka
- Department of Computer Science & Engineering, Bapuji Institute of Engineering & Technology, Davangere, Karnataka, India
| | - Choonkil Park
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - M.C. Shanmukha
- Department of Mathematics, Bapuji Institute of Engineering & Technology, Davangere, Karnataka, India
| | - Muhammad Azeem
- Department of Mathematics, Riphah International University Lahore, Pakistan
| |
Collapse
|
2
|
Hassan D, Hussein HI, Hassan MM. Heart disease prediction based on pre-trained deep neural networks combined with principal component analysis. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Lima AA, Mridha MF, Das SC, Kabir MM, Islam MR, Watanobe Y. A Comprehensive Survey on the Detection, Classification, and Challenges of Neurological Disorders. BIOLOGY 2022; 11:469. [PMID: 35336842 PMCID: PMC8945195 DOI: 10.3390/biology11030469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
Abstract
Neurological disorders (NDs) are becoming more common, posing a concern to pregnant women, parents, healthy infants, and children. Neurological disorders arise in a wide variety of forms, each with its own set of origins, complications, and results. In recent years, the intricacy of brain functionalities has received a better understanding due to neuroimaging modalities, such as magnetic resonance imaging (MRI), magnetoencephalography (MEG), and positron emission tomography (PET), etc. With high-performance computational tools and various machine learning (ML) and deep learning (DL) methods, these modalities have discovered exciting possibilities for identifying and diagnosing neurological disorders. This study follows a computer-aided diagnosis methodology, leading to an overview of pre-processing and feature extraction techniques. The performance of existing ML and DL approaches for detecting NDs is critically reviewed and compared in this article. A comprehensive portion of this study also shows various modalities and disease-specified datasets that detect and records images, signals, and speeches, etc. Limited related works are also summarized on NDs, as this domain has significantly fewer works focused on disease and detection criteria. Some of the standard evaluation metrics are also presented in this study for better result analysis and comparison. This research has also been outlined in a consistent workflow. At the conclusion, a mandatory discussion section has been included to elaborate on open research challenges and directions for future work in this emerging field.
Collapse
Affiliation(s)
- Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - M. Firoz Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
4
|
Fan Z, Chiong R, Hu Z, Keivanian F, Chiong F. Body fat prediction through feature extraction based on anthropometric and laboratory measurements. PLoS One 2022; 17:e0263333. [PMID: 35192644 PMCID: PMC8863283 DOI: 10.1371/journal.pone.0263333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Obesity, associated with having excess body fat, is a critical public health problem that can cause serious diseases. Although a range of techniques for body fat estimation have been developed to assess obesity, these typically involve high-cost tests requiring special equipment. Thus, the accurate prediction of body fat percentage based on easily accessed body measurements is important for assessing obesity and its related diseases. By considering the characteristics of different features (e.g. body measurements), this study investigates the effectiveness of feature extraction for body fat prediction. It evaluates the performance of three feature extraction approaches by comparing four well-known prediction models. Experimental results based on two real-world body fat datasets show that the prediction models perform better on incorporating feature extraction for body fat prediction, in terms of the mean absolute error, standard deviation, root mean square error and robustness. These results confirm that feature extraction is an effective pre-processing step for predicting body fat. In addition, statistical analysis confirms that feature extraction significantly improves the performance of prediction methods. Moreover, the increase in the number of extracted features results in further, albeit slight, improvements to the prediction models. The findings of this study provide a baseline for future research in related areas.
Collapse
Affiliation(s)
- Zongwen Fan
- School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW, Australia
- College of Computer Science and Technology, Huaqiao University, Xiamen, China
| | - Raymond Chiong
- School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Zhongyi Hu
- School of Information Management, Wuhan University, Wuhan, China
| | - Farshid Keivanian
- School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
5
|
Das H, Naik B, Behera HS. Optimal Selection of Features Using Artificial Electric Field Algorithm for Classification. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05486-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Bokhari W, Bansal A. AEC Classifier: A Tree-Based Classifier with Error Control for Medical Disease Diagnosis and Other Applications. INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING 2021. [DOI: 10.1142/s1793351x21400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In medical disease diagnosis, the cost of a false negative could greatly outweigh the cost of a false positive. This is because the former could cost a life, whereas the latter may only cause medical costs and stress to the patient. The unique nature of this problem highlights the need of asymmetric error control for binary classification applications. In this domain, traditional machine learning classifiers may not be ideal as they do not provide a way to control the number of false negatives below a certain threshold. This paper proposes a novel tree-based binary classification algorithm that can control the number of false negatives with a mathematical guarantee, based on Neyman–Pearson (NP) Lemma. This classifier is evaluated on the data obtained from different heart studies and it predicts the risk of cardiac disease, not only with comparable accuracy and AUC-ROC score but also with full control over the number of false negatives. The methodology used to construct this classifier can be expanded to many more use cases, not only in medical disease diagnosis but also beyond as shown from analysis on different diverse datasets.
Collapse
Affiliation(s)
| | - Ajay Bansal
- Arizona State University at Tempe, Arizona, USA
| |
Collapse
|
7
|
Innovative Artificial Intelligence Approach for Hearing-Loss Symptoms Identification Model Using Machine Learning Techniques. SUSTAINABILITY 2021. [DOI: 10.3390/su13105406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physicians depend on their insight and experience and on a fundamentally indicative or symptomatic approach to decide on the possible ailment of a patient. However, numerous phases of problem identification and longer strategies can prompt a longer time for consulting and can subsequently cause other patients that require attention to wait for longer. This can bring about pressure and tension concerning those patients. In this study, we focus on developing a decision-support system for diagnosing the symptoms as a result of hearing loss. The model is implemented by utilizing machine learning techniques. The Frequent Pattern Growth (FP-Growth) algorithm is used as a feature transformation method and the multivariate Bernoulli naïve Bayes classification model as the classifier. To find the correlation that exists between the hearing thresholds and symptoms of hearing loss, the FP-Growth and association rule algorithms were first used to experiment with small sample and large sample datasets. The result of these two experiments showed the existence of this relationship, and that the performance of the hybrid of the FP-Growth and naïve Bayes algorithms in identifying hearing-loss symptoms was found to be efficient, with a very small error rate. The average accuracy rate and average error rate for the multivariate Bernoulli model with FP-Growth feature transformation, using five training sets, are 98.25% and 1.73%, respectively.
Collapse
|
8
|
Alizadehsani R, Roshanzamir M, Hussain S, Khosravi A, Koohestani A, Zangooei MH, Abdar M, Beykikhoshk A, Shoeibi A, Zare A, Panahiazar M, Nahavandi S, Srinivasan D, Atiya AF, Acharya UR. Handling of uncertainty in medical data using machine learning and probability theory techniques: a review of 30 years (1991-2020). ANNALS OF OPERATIONS RESEARCH 2021; 339:1-42. [PMID: 33776178 PMCID: PMC7982279 DOI: 10.1007/s10479-021-04006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 05/17/2023]
Abstract
Understanding the data and reaching accurate conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have been widely used for this purpose in various fields. One critically important yet less explored aspect is capturing and analyzing uncertainties in the data and model. Proper quantification of uncertainty helps to provide valuable information to obtain accurate diagnosis. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, various novel deep learning techniques have been proposed to deal with such uncertainties and improve the performance in decision making.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Mohamad Roshanzamir
- Department of Computer Engineering, Faculty of Engineering, Fasa University, 74617-81189 Fasa, Iran
| | - Sadiq Hussain
- System Administrator, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Afsaneh Koohestani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | | | - Moloud Abdar
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Adham Beykikhoshk
- Applied Artificial Intelligence Institute, Deakin University, Geelong, Australia
| | - Afshin Shoeibi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
- Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi University of Technology, Tehran, Iran
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, University of California, San Francisco, USA
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Dipti Srinivasan
- Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Amir F. Atiya
- Department of Computer Engineering, Faculty of Engineering, Cairo University, Cairo, 12613 Egypt
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|