1
|
Ghobadi E, Hashemi SM, Fakhim H, Hosseini-Khah Z, Badali H, Emami S. Design, synthesis and biological activity of hybrid antifungals derived from fluconazole and mebendazole. Eur J Med Chem 2023; 249:115146. [PMID: 36709648 DOI: 10.1016/j.ejmech.2023.115146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
A novel series of triazole alcohol antifungals bearing a 5-benzoylbenzimidazol-2-ylthio side chain have been designed and synthesized as hybrids of fluconazole (a typical triazole antifungal) and mebendazole (an anthelmintic agent with antifungal activity). The title compounds were synthesized via the reaction of an appropriate oxirane and desired 2-mercaptobenzimidazole. Although there was possibility for formation of different N-substituted or S-substituted products, the structures of final compounds were assigned as thioether congeners by using 13C NMR spectroscopy. The SAR analysis of the primary lead compounds (series A) was conducted by simplifying the 5-benzoylbenzimidazol-2-ylthio residue to the benzimidazol-2-ylthio (series B) or benzothiazol-2-ylthio side chain (series C), and modification of halogen substituent on the phenethyl-triazole scaffold. In general, series A (compounds 4a-e) containing 5-benzoylbenzimidazole scaffold showed better antifungal activity against Candida spp. and Cryptococcus neoformans than related benzimidazole and benzothiazole derivatives. The better results were obtained with the 4-chloro derivative 4b displaying MICs <0.063-1 μg/mL. Although, removing benzoyl group from compound 4b had negative effect on the activity, optimization of phenethyl-triazole scaffold by desired halogen substituent resulted in compound 5c being as potent as 4b. In vitro and in silico ADMET evaluations of the most promising compounds 4b and 5c indicated that the selected compounds have desirable ADMET properties in comparison to standard drug fluconazole. Docking simulation study demonstrated that the benzimidazol-2-ylthio moiety is responsible for the potent antifungal activity of these compounds.
Collapse
Affiliation(s)
- Elham Ghobadi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hosseini-Khah
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Molecular Microbiology & Immunology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Dadashpour S, Ghobadi E, Emami S. Chemical and biological aspects of posaconazole as a classic antifungal agent with non-classical properties: highlighting a tetrahydrofuran-based drug toward generation of new drugs. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Sekar V, Ramasamy G, Ravikumar C. In silico Molecular Docking for assessing Anti-fungal Competency of Hydroxychavicol, a Phenolic Compound of Betel Leaf ( Piper betle L.) against COVID-19 Associated Maiming Mycotic Infections. Drug Dev Ind Pharm 2022; 48:169-188. [PMID: 35311433 DOI: 10.1080/03639045.2022.2048665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: To investigate the inhibitory nature of hydroxychavicol against the Covid-19 associated mycotic infections, the present in silico study was performed in hydroxychavicol with the target Lanosterol 14 alpha demethylase and its competency was compared with four approved anti-fungal drugs. Significance: The corona virus pandemic has drawn stark lines between rich nations and poor, and the occurrence of COVID-19 associated mycotic infections, mucormycosis epidemic stands as the latest manifestation. The increase in resistance in known fungal pathogens to the available anti-fungal drugs and side effects are the important demands that forced to search anti-fungal compounds from medicinal plants as therapeutic alternatives. During the fishing expedition, Piper betle L., gets tremendous attention for its rich source of medicinally important compounds. Among them, hydroxychavicol has the enormous supportive records against microbial growth. Methods: Hydroxychavicol and the chosen drugs were retrieved from the Pubchem database and subjected to ADME analysis. The structure of the target of the chosen COVID-19 associated fungal pathogens was retrieved from PDB and unavailable protein structures were modeled using Swiss Model and validated. Virtual screening (PyRx version 0.8) was performed and the interactions were visualized using BIOVIA Discovery Studio. Results: ADME screening of hydroxychavicol was found to have clear reciprocity with the drug-likeliness nature and the subsequent molecular docking study revealed its good binding affinity towards the target protein suggesting its inhibitory nature. Conclusion: This study offers the possibility of making use of the suppressive nature of hydroxychavicol in the treatment of mycotic infections either exclusively/in synergistic approach.
Collapse
Affiliation(s)
- Vinusri Sekar
- Research Scholar, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gnanam Ramasamy
- Professor and Head, Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Caroline Ravikumar
- Teaching Assistant, Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
4
|
Ghobadi E, Saednia S, Emami S. Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development. Eur J Med Chem 2022; 231:114161. [DOI: 10.1016/j.ejmech.2022.114161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
|
5
|
Shafiei M, Toreyhi H, Firoozpour L, Akbarzadeh T, Amini M, Hosseinzadeh E, Hashemzadeh M, Peyton L, Lotfali E, Foroumadi A. Design, Synthesis, and In Vitro and In Vivo Evaluation of Novel Fluconazole-Based Compounds with Promising Antifungal Activities. ACS OMEGA 2021; 6:24981-25001. [PMID: 34604679 PMCID: PMC8482776 DOI: 10.1021/acsomega.1c04016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 05/30/2023]
Abstract
Demand has arisen for developing new azole antifungal agents with the growth of the resistant rate of infective fungal species to current azole antifungals in recent years. Accordingly, the present study reports the synthesis of novel fluconazole (FLC) analogues bearing urea functionality that led to discovering new azole agents with promising antifungal activities. In particular, compounds 8b and 8c displayed broad-spectrum activity and superior in vitro antifungal capabilities compared to the standard drug FLC against sensitive and resistant Candida albicans (C. albicans). The highly active compounds 8b and 8c had potent antibiofilm properties against FLC-resistant C. albicans species. Additionally, these compounds exhibited very low toxicity for three mammalian cell lines and human red blood cells. Time-kill studies revealed that our synthesized compounds displayed a fungicidal mechanism toward fungal growth. Furthermore, a density functional theory (DFT) calculation, additional docking, and independent gradient model (IGM) studies were performed to analyze their structure-activity relationship (SAR) and to assess the molecular interactions in the related target protein. Finally, in vivo results represented a significant reduction in the tissue fungal burden and improvements in the survival rate in a mice model of systemic candidiasis along with in vitro and in silico studies, demonstrating the therapeutic efficiency of compounds 8b and 8c as novel leads for candidiasis drug discovery.
Collapse
Affiliation(s)
- Mohammad Shafiei
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Hossein Toreyhi
- Student
Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Loghman Firoozpour
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Tahmineh Akbarzadeh
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Elaheh Hosseinzadeh
- Department
of Chemistry, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mehrnoosh Hashemzadeh
- University
of Arizona College of Medicine Phoenix and Pima college, Tucson, Arizona 85750, United States
| | - Lee Peyton
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905-0001, United States
| | - Ensieh Lotfali
- Department
of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|