1
|
Scharre A, Scholler D, Gesell‐May S, Müller T, Zablotski Y, Ertel W, May A. Comparison of veterinarians and a deep learning tool in the diagnosis of equine ophthalmic diseases. Equine Vet J 2025; 57:47-53. [PMID: 38567426 PMCID: PMC11616947 DOI: 10.1111/evj.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND/OBJECTIVES The aim was to compare ophthalmic diagnoses made by veterinarians to a deep learning (artificial intelligence) software tool which was developed to aid in the diagnosis of equine ophthalmic diseases. As equine ophthalmology is a very specialised field in equine medicine, the tool may be able to help in diagnosing equine ophthalmic emergencies such as uveitis. STUDY DESIGN In silico tool development and assessment of diagnostic performance. METHODS A deep learning tool which was developed and trained for classification of equine ophthalmic diseases was tested with 40 photographs displaying various equine ophthalmic diseases. The same data set was shown to different groups of veterinarians (equine, small animal, mixed practice, other) using an opinion poll to compare the results and evaluate the performance of the programme. Convolutional Neural Networks (CNN) were trained on 2346 photographs of equine eyes, which were augmented to 9384 images. Two hundred and sixty-one separate unmodified images were used to evaluate the trained network. The trained deep learning tool was used on 40 photographs of equine eyes (10 healthy, 12 uveitis, 18 other diseases). An opinion poll was used to evaluate the diagnostic performance of 148 veterinarians in comparison to the software tool. RESULTS The probability for the correct answer was 93% for the AI programme. Equine veterinarians answered correctly in 76%, whereas other veterinarians reached 67% probability for the correct diagnosis. MAIN LIMITATIONS Diagnosis was solely based on images of equine eyes without the possibility to evaluate the inner eye. CONCLUSIONS The deep learning tool proved to be at least equivalent to veterinarians in assessing ophthalmic diseases in photographs. We therefore conclude that the software tool may be useful in detecting potential emergency cases. In this context, blindness in horses may be prevented as the horse can receive accurate treatment or can be sent to an equine hospital. Furthermore, the tool gives less experienced veterinarians the opportunity to differentiate between uveitis and other ocular anterior segment disease and to support them in their decision-making regarding treatment.
Collapse
Affiliation(s)
- Annabel Scharre
- Equine ClinicLudwig Maximilians UniversityOberschleissheimGermany
| | - Dominik Scholler
- Equine ClinicLudwig Maximilians UniversityOberschleissheimGermany
| | | | | | - Yury Zablotski
- Clinic for RuminantsLudwig Maximilians UniversityOberschleissheimGermany
| | - Wolfgang Ertel
- Institute for Artificial Intelligence, Ravensburg‐Weingarten UniversityWeingartenGermany
| | - Anna May
- Equine ClinicLudwig Maximilians UniversityOberschleissheimGermany
| |
Collapse
|
2
|
Sharmin S, Rashid MR, Khatun T, Hasan MZ, Uddin MS, Marzia. A dataset of color fundus images for the detection and classification of eye diseases. Data Brief 2024; 57:110979. [PMID: 39493522 PMCID: PMC11528549 DOI: 10.1016/j.dib.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.
Collapse
Affiliation(s)
- Shayla Sharmin
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Riadur Rashid
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Tania Khatun
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Md Zahid Hasan
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Shorif Uddin
- Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Marzia
- Faculty of Medicine, University of Dhaka, Bangladesh
| |
Collapse
|
3
|
Goh JHL, Ang E, Srinivasan S, Lei X, Loh J, Quek TC, Xue C, Xu X, Liu Y, Cheng CY, Rajapakse JC, Tham YC. Comparative Analysis of Vision Transformers and Conventional Convolutional Neural Networks in Detecting Referable Diabetic Retinopathy. OPHTHALMOLOGY SCIENCE 2024; 4:100552. [PMID: 39165694 PMCID: PMC11334703 DOI: 10.1016/j.xops.2024.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 08/22/2024]
Abstract
Objective Vision transformers (ViTs) have shown promising performance in various classification tasks previously dominated by convolutional neural networks (CNNs). However, the performance of ViTs in referable diabetic retinopathy (DR) detection is relatively underexplored. In this study, using retinal photographs, we evaluated the comparative performances of ViTs and CNNs on detection of referable DR. Design Retrospective study. Participants A total of 48 269 retinal images from the open-source Kaggle DR detection dataset, the Messidor-1 dataset and the Singapore Epidemiology of Eye Diseases (SEED) study were included. Methods Using 41 614 retinal photographs from the Kaggle dataset, we developed 5 CNN (Visual Geometry Group 19, ResNet50, InceptionV3, DenseNet201, and EfficientNetV2S) and 4 ViTs models (VAN_small, CrossViT_small, ViT_small, and Hierarchical Vision transformer using Shifted Windows [SWIN]_tiny) for the detection of referable DR. We defined the presence of referable DR as eyes with moderate or worse DR. The comparative performance of all 9 models was evaluated in the Kaggle internal test dataset (with 1045 study eyes), and in 2 external test sets, the SEED study (5455 study eyes) and the Messidor-1 (1200 study eyes). Main Outcome Measures Area under operating characteristics curve (AUC), specificity, and sensitivity. Results Among all models, the SWIN transformer displayed the highest AUC of 95.7% on the internal test set, significantly outperforming the CNN models (all P < 0.001). The same observation was confirmed in the external test sets, with the SWIN transformer achieving AUC of 97.3% in SEED and 96.3% in Messidor-1. When specificity level was fixed at 80% for the internal test, the SWIN transformer achieved the highest sensitivity of 94.4%, significantly better than all the CNN models (sensitivity levels ranging between 76.3% and 83.8%; all P < 0.001). This trend was also consistently observed in both external test sets. Conclusions Our findings demonstrate that ViTs provide superior performance over CNNs in detecting referable DR from retinal photographs. These results point to the potential of utilizing ViT models to improve and optimize retinal photo-based deep learning for referable DR detection. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jocelyn Hui Lin Goh
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Elroy Ang
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sahana Srinivasan
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Xiaofeng Lei
- Institute of High-Performance Computing, A∗STAR, Singapore, Singapore
| | - Johnathan Loh
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Ten Cheer Quek
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Cancan Xue
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Xinxing Xu
- Institute of High-Performance Computing, A∗STAR, Singapore, Singapore
| | - Yong Liu
- Institute of High-Performance Computing, A∗STAR, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Jagath C. Rajapakse
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Bouqentar MA, Terrada O, Hamida S, Saleh S, Lamrani D, Cherradi B, Raihani A. Early heart disease prediction using feature engineering and machine learning algorithms. Heliyon 2024; 10:e38731. [PMID: 39397946 PMCID: PMC11471268 DOI: 10.1016/j.heliyon.2024.e38731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Heart disease is one of the most widespread global health issues, it is the reason behind around 32 % of deaths worldwide every year. The early prediction and diagnosis of heart diseases are critical for effective treatment and sickness management. Despite the efforts of healthcare professionals, cardiovascular surgeons and cardiologists' misdiagnosis and misinterpretation of test results may happen every day. This study addresses the growing global health challenge raised by Cardiovascular Diseases (CVDs), which account for 32 % of all deaths worldwide, according to the World Health Organization (WHO). With the progress of Machine Learning (ML) and Deep Learning (DL) techniques as part of Artificial Intelligence (AI), these technologies have become crucial for predicting and diagnosing CVDs. This research aims to develop an ML system for the early prediction of cardiovascular diseases by choosing one of the powerful existing ML algorithms after a deep comparative analysis of several. To achieve this work, the Cleveland and Statlog heart datasets from international platforms are used in this study to evaluate and validate the system's performance. The Cleveland dataset is categorized and used to train various ML algorithms, including decision tree, random forest, support vector machine, logistic regression, adaptive boosting, and K-nearest neighbors. The performance of each algorithm is assessed based on accuracy, precision, recall, F1 score, and the Area Under the Curve metrics. Hyperparameter tuning approaches have been employed to find the best hyperparameters that reflect the optimal performance of the used algorithms based on different evaluation approaches including 10-fold cross-validation with a 95 % confidence interval. The study's findings highlight the potential of ML in improving the early prediction and diagnosis of cardiovascular diseases. By comparing and analyzing the performance of the applied algorithms on both the Cleveland and Statlog heart datasets, this research contributes to the advancement of ML techniques in the medical field. The developed ML system offers a valuable tool for healthcare professionals in the early prediction and diagnosis of cardiovascular diseases, with implications for the prediction and diagnosis of other diseases as well.
Collapse
Affiliation(s)
| | - Oumaima Terrada
- EEIS Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Soufiane Hamida
- EEIS Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- 2IACS Laboratory, ENSET, University Hassan II of Casablanca, Mohammedia, Morocco
- GENIUS Laboratory, SupMTI of Rabat, Rabat, Morocco
| | - Shawki Saleh
- EEIS Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Driss Lamrani
- EEIS Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Bouchaib Cherradi
- EEIS Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- 2IACS Laboratory, ENSET, University Hassan II of Casablanca, Mohammedia, Morocco
- STIE Team, CRMEF Casablanca-Settat. Provincial Section of El Jadida, El Jadida, 24000, Morocco
| | - Abdelhadi Raihani
- EEIS Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| |
Collapse
|
5
|
Wang S, He X, Jian Z, Li J, Xu C, Chen Y, Liu Y, Chen H, Huang C, Hu J, Liu Z. Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review. EYE AND VISION (LONDON, ENGLAND) 2024; 11:38. [PMID: 39350240 PMCID: PMC11443922 DOI: 10.1186/s40662-024-00405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND In recent years, ophthalmology has emerged as a new frontier in medical artificial intelligence (AI) with multi-modal AI in ophthalmology garnering significant attention across interdisciplinary research. This integration of various types and data models holds paramount importance as it enables the provision of detailed and precise information for diagnosing eye and vision diseases. By leveraging multi-modal ophthalmology AI techniques, clinicians can enhance the accuracy and efficiency of diagnoses, and thus reduce the risks associated with misdiagnosis and oversight while also enabling more precise management of eye and vision health. However, the widespread adoption of multi-modal ophthalmology poses significant challenges. MAIN TEXT In this review, we first summarize comprehensively the concept of modalities in the field of ophthalmology, the forms of fusion between modalities, and the progress of multi-modal ophthalmic AI technology. Finally, we discuss the challenges of current multi-modal AI technology applications in ophthalmology and future feasible research directions. CONCLUSION In the field of ophthalmic AI, evidence suggests that when utilizing multi-modal data, deep learning-based multi-modal AI technology exhibits excellent diagnostic efficacy in assisting the diagnosis of various ophthalmic diseases. Particularly, in the current era marked by the proliferation of large-scale models, multi-modal techniques represent the most promising and advantageous solution for addressing the diagnosis of various ophthalmic diseases from a comprehensive perspective. However, it must be acknowledged that there are still numerous challenges associated with the application of multi-modal techniques in ophthalmic AI before they can be effectively employed in the clinical setting.
Collapse
Affiliation(s)
- Shaopan Wang
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
- School of Informatics, Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China
| | - Xin He
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Zhongquan Jian
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
- School of Informatics, Xiamen University, Xiamen, Fujian, China
| | - Jie Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Changsheng Xu
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
- School of Informatics, Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China
| | - Yuguang Chen
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
- School of Informatics, Xiamen University, Xiamen, Fujian, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China
| | - Yuwen Liu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China
| | - Han Chen
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Caihong Huang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China
| | - Jiaoyue Hu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China.
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Chengyi Building, 4Th Floor, 4221-122, South Xiang'an Rd, Xiamen, 361005, Fujian, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Wangweera C, Zanini P. Comparison review of image classification techniques for early diagnosis of diabetic retinopathy. Biomed Phys Eng Express 2024; 10:062001. [PMID: 39173657 DOI: 10.1088/2057-1976/ad7267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model's efficiency. Each ML method's computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
Collapse
Affiliation(s)
| | - Plinio Zanini
- Center of Engineering, Modeling and Applied Social Science, Federal University of ABC (UFABC), Santo André, Brazil
| |
Collapse
|
7
|
Lim WX, Chen Z. Enhancing deep learning pre-trained networks on diabetic retinopathy fundus photographs with SLIC-G. Med Biol Eng Comput 2024; 62:2571-2583. [PMID: 38649629 DOI: 10.1007/s11517-024-03093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Diabetic retinopathy disease contains lesions (e.g., exudates, hemorrhages, and microaneurysms) that are minute to the naked eye. Determining the lesions at pixel level poses a challenge as each pixel does not reflect any semantic entities. Furthermore, the computational cost of inspecting each pixel is expensive because the number of pixels is high even at low resolution. In this work, we propose a hybrid image processing method. Simple Linear Iterative Clustering with Gaussian Filter (SLIC-G) for the purpose of overcoming pixel constraints. The SLIC-G image processing method is divided into two stages: (1) simple linear iterative clustering superpixel segmentation and (2) Gaussian smoothing operation. In such a way, a large number of new transformed datasets are generated and then used for model training. Finally, two performance evaluation metrics that are suitable for imbalanced diabetic retinopathy datasets were used to validate the effectiveness of the proposed SLIC-G. The results indicate that, in comparison to prior published works' results, the proposed SLIC-G shows better performance on image classification of class imbalanced diabetic retinopathy datasets. This research reveals the importance of image processing and how it influences the performance of deep learning networks. The proposed SLIC-G enhances pre-trained network performance by eliminating the local redundancy of an image, which preserves local structures, but avoids over-segmented, noisy clips. It closes the research gap by introducing the use of superpixel segmentation and Gaussian smoothing operation as image processing methods in diabetic retinopathy-related tasks.
Collapse
Affiliation(s)
- Wei Xiang Lim
- Faculty of Science and Engineering, School of Computer Science, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Zhiyuan Chen
- Faculty of Science and Engineering, School of Computer Science, University of Nottingham Malaysia, Semenyih, Malaysia.
| |
Collapse
|
8
|
Alsadoun L, Ali H, Mushtaq MM, Mushtaq M, Burhanuddin M, Anwar R, Liaqat M, Bokhari SFH, Hasan AH, Ahmed F. Artificial Intelligence (AI)-Enhanced Detection of Diabetic Retinopathy From Fundus Images: The Current Landscape and Future Directions. Cureus 2024; 16:e67844. [PMID: 39323686 PMCID: PMC11424092 DOI: 10.7759/cureus.67844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Diabetic retinopathy (DR) remains a leading cause of vision loss worldwide, with early detection critical for preventing irreversible damage. This review explores the current landscape and future directions of artificial intelligence (AI)-enhanced detection of DR from fundus images. Recent advances in deep learning and computer vision have enabled AI systems to analyze retinal images with expert-level accuracy, potentially transforming DR screening. Key developments include convolutional neural networks achieving high sensitivity and specificity in detecting referable DR, multi-task learning approaches that can simultaneously detect and grade DR severity, and lightweight models enabling deployment on mobile devices. While these AI systems show promise in improving the efficiency and accessibility of DR screening, several challenges remain. These include ensuring generalizability across diverse populations, standardizing image acquisition and quality, addressing the "black box" nature of complex models, and integrating AI seamlessly into clinical workflows. Future directions in the field encompass explainable AI to enhance transparency, federated learning to leverage decentralized datasets, and the integration of AI with electronic health records and other diagnostic modalities. There is also growing potential for AI to contribute to personalized treatment planning and predictive analytics for disease progression. As the technology continues to evolve, maintaining a focus on rigorous clinical validation, ethical considerations, and real-world implementation will be crucial for realizing the full potential of AI-enhanced DR detection in improving global eye health outcomes.
Collapse
Affiliation(s)
- Lara Alsadoun
- Trauma and Orthopaedics, Chelsea and Westminster Hospital, London, GBR
| | - Husnain Ali
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | - Maham Mushtaq
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | - Rahma Anwar
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Maryyam Liaqat
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | | | - Fazeel Ahmed
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| |
Collapse
|
9
|
Bhandari S, Pathak S, Jain SA, Agarwal B. Improved diabetic retinopathy severity classification using squeeze-and-excitation and sparse light weight multi-level attention u-net with transfer learning from xception. Acta Diabetol 2024:10.1007/s00592-024-02341-x. [PMID: 39060799 DOI: 10.1007/s00592-024-02341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
AIMS Diabetic Retinopathy (DR) is a significant cause of vision loss in diabetic patients, making early detection and accurate severity classification essential for effective management and prevention. This study aims to develop an enhanced DR severity classification approach using advanced model architectures and transfer learning to improve diagnostic accuracy and support better patient care. METHODS We propose a novel model, Xception Squeeze-and-Excitation Sparse Lightweight Multi-Level Attention U-Net (XceSE_SparseLwMLA-UNet), designed to classify DR severity using fundus images from the Messidor 1 and Messidor 2 datasets. The XceSE_SparseLwMLA-UNet integrates several advanced mechanisms: the Squeeze-and-Excitation (SE) mechanism for adaptive feature recalibration, the Sparse Lightweight Multi-Level Attention (SparseLwMLA) mechanism for effective contextual information integration, and transfer learning from the Xception architecture to enhance feature extraction capabilities. The SE mechanism refines channel-wise feature responses, while SparseLwMLA enhances the model's ability to identify complex DR patterns. Transfer learning utilizes pre-trained weights from Xception to improve generalization across DR severity levels. RESULTS The proposed XceSE_SparseLwMLA-UNet model demonstrates superior performance in DR severity classification, achieving higher accuracy and improved multi-class F1 scores compared to existing models. The model's color-coded segmentation outputs offer interpretable visual representations, aiding medical professionals in assessing DR severity levels. CONCLUSIONS The XceSE_SparseLwMLA-UNet model shows promise for advancing early DR diagnosis and management by enhancing classification accuracy and providing valuable visual insights. Its integration of advanced architectural features and transfer learning contributes to better patient care and improved visual health outcomes.
Collapse
Affiliation(s)
- Sachin Bhandari
- Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University Rajasthan, Jaipur, India.
| | - Sunil Pathak
- Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University Rajasthan, Jaipur, India
| | - Sonal Amit Jain
- PG Department of Computer Science and Information Technology, Sardar Patel University, Vallabh Vidyanagar, India
| | - Basant Agarwal
- Department of Computer Science and Engineering, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
10
|
Chiang YY, Chen CL, Chen YH. Deep Learning Evaluation of Glaucoma Detection Using Fundus Photographs in Highly Myopic Populations. Biomedicines 2024; 12:1394. [PMID: 39061968 PMCID: PMC11274657 DOI: 10.3390/biomedicines12071394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES This study aimed to use deep learning to identify glaucoma and normal eyes in groups with high myopia using fundus photographs. METHODS Patients who visited Tri-Services General Hospital from 1 November 2018 to 31 October 2022 were retrospectively reviewed. Patients with high myopia (spherical equivalent refraction of ≤-6.0 D) were included in the current analysis. Meanwhile, patients with pathological myopia were excluded. The participants were then divided into the high myopia group and high myopia glaucoma group. We used two classification models with the convolutional block attention module (CBAM), an attention mechanism module that enhances the performance of convolutional neural networks (CNNs), to investigate glaucoma cases. The learning data of this experiment were evaluated through fivefold cross-validation. The images were categorized into training, validation, and test sets in a ratio of 6:2:2. Grad-CAM visual visualization improved the interpretability of the CNN results. The performance indicators for evaluating the model include the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS A total of 3088 fundus photographs were used for the deep-learning model, including 1540 and 1548 fundus photographs for the high myopia glaucoma and high myopia groups, respectively. The average refractive power of the high myopia glaucoma group and the high myopia group were -8.83 ± 2.9 D and -8.73 ± 2.6 D, respectively (p = 0.30). Based on a fivefold cross-validation assessment, the ConvNeXt_Base+CBAM architecture had the best performance, with an AUC of 0.894, accuracy of 82.16%, sensitivity of 81.04%, specificity of 83.27%, and F1 score of 81.92%. CONCLUSIONS Glaucoma in individuals with high myopia was identified from their fundus photographs.
Collapse
Affiliation(s)
- Yen-Ying Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| |
Collapse
|
11
|
Bhulakshmi D, Rajput DS. A systematic review on diabetic retinopathy detection and classification based on deep learning techniques using fundus images. PeerJ Comput Sci 2024; 10:e1947. [PMID: 38699206 PMCID: PMC11065411 DOI: 10.7717/peerj-cs.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/28/2024] [Indexed: 05/05/2024]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment globally. It occurs due to long-term diabetes with fluctuating blood glucose levels. It has become a significant concern for people in the working age group as it can lead to vision loss in the future. Manual examination of fundus images is time-consuming and requires much effort and expertise to determine the severity of the retinopathy. To diagnose and evaluate the disease, deep learning-based technologies have been used, which analyze blood vessels, microaneurysms, exudates, macula, optic discs, and hemorrhages also used for initial detection and grading of DR. This study examines the fundamentals of diabetes, its prevalence, complications, and treatment strategies that use artificial intelligence methods such as machine learning (ML), deep learning (DL), and federated learning (FL). The research covers future studies, performance assessments, biomarkers, screening methods, and current datasets. Various neural network designs, including recurrent neural networks (RNNs), generative adversarial networks (GANs), and applications of ML, DL, and FL in the processing of fundus images, such as convolutional neural networks (CNNs) and their variations, are thoroughly examined. The potential research methods, such as developing DL models and incorporating heterogeneous data sources, are also outlined. Finally, the challenges and future directions of this research are discussed.
Collapse
Affiliation(s)
- Dasari Bhulakshmi
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dharmendra Singh Rajput
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Wang AQ, Karaman BK, Kim H, Rosenthal J, Saluja R, Young SI, Sabuncu MR. A Framework for Interpretability in Machine Learning for Medical Imaging. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:53277-53292. [PMID: 39421804 PMCID: PMC11486155 DOI: 10.1109/access.2024.3387702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Interpretability for machine learning models in medical imaging (MLMI) is an important direction of research. However, there is a general sense of murkiness in what interpretability means. Why does the need for interpretability in MLMI arise? What goals does one actually seek to address when interpretability is needed? To answer these questions, we identify a need to formalize the goals and elements of interpretability in MLMI. By reasoning about real-world tasks and goals common in both medical image analysis and its intersection with machine learning, we identify five core elements of interpretability: localization, visual recognizability, physical attribution, model transparency, and actionability. From this, we arrive at a framework for interpretability in MLMI, which serves as a step-by-step guide to approaching interpretability in this context. Overall, this paper formalizes interpretability needs in the context of medical imaging, and our applied perspective clarifies concrete MLMI-specific goals and considerations in order to guide method design and improve real-world usage. Our goal is to provide practical and didactic information for model designers and practitioners, inspire developers of models in the medical imaging field to reason more deeply about what interpretability is achieving, and suggest future directions of interpretability research.
Collapse
Affiliation(s)
- Alan Q Wang
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Batuhan K Karaman
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Heejong Kim
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Jacob Rosenthal
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional M.D.-Ph.D. Program, New York City, NY 10065, USA
| | - Rachit Saluja
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Sean I Young
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA 02129, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Mert R Sabuncu
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| |
Collapse
|
13
|
Hemanth SV, Alagarsamy S, Rajkumar TD. A novel deep learning model for diabetic retinopathy detection in retinal fundus images using pre-trained CNN and HWBLSTM. J Biomol Struct Dyn 2024:1-19. [PMID: 38373067 DOI: 10.1080/07391102.2024.2314269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
Diabetic retinopathy (DR) is a global visual indicator of diabetes that leads to blindness and loss of vision. Manual testing presents a more difficult task when attempting to detect DR due to the complexity and variances of DR. Early detection and treatment prevent the diabetic patients from visual loss. Also classifying the intensity and levels of DR is crucial to provide necessary treatment. This study develops a novel deep learning (DL) approach called He Weighted Bi-directional Long Short-term Memory (HWBLSTM) with an effective transfer learning technique for detecting DR from the RFI. The collected fundus images initially undergo preprocessing to improve their quality, which includes noise removal and contrast enhancement using a Hybrid Gaussian Filter and probability density Function-based Gamma Correction (HGFPDFGC) technique. The segmentation procedure divides the image into subgroups and is crucial for accurate detection and classification. The segmentation of the study initially removes the optical disk (OD) and blood vessels (BVs) from the preprocessed images using mathematical morphological operations. Next, it segments the retinal lesions from the OD and BV removed images using the Enhanced Grasshopper Optimization-based Region Growing Algorithm (EGORGA). Then, the features from the segmented retinal lesions are learned using a Squeeze Net (SQN), and the dimensionality reduction of the extracted features is done using the Modified Singular Value Decomposition (MSVD) approach. Finally, the classification is performed by employing the HWBLSTM approach, which classifies the DR abnormalities in datasets as non-DR (NDR), non-proliferative DR (NPDR), moderate NPDR (MDNPDR), and severe DR, also known as proliferative DR (PDR). The proposed approach is implemented on APTOS as well as MESSIDOR datasets. The outcomes proved that the proposed technique accurately identifies the DR with minimal computation overhead compared to the existing approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S V Hemanth
- Department of Computer Science and Engineering, Hyderabad Institute of Technology and Management, Hyderabad, India
| | - Saravanan Alagarsamy
- Department of Information Technology, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, India
| | - T Dhiliphan Rajkumar
- Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
14
|
Kothadiya D, Rehman A, Abbas S, Alamri FS, Saba T. Attention-based deep learning framework to recognize diabetes disease from cellular retinal images. Biochem Cell Biol 2023; 101:550-561. [PMID: 37473447 DOI: 10.1139/bcb-2023-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A medical disorder known as diabetic retinopathy (DR) affects people who suffer from diabetes. Many people are visually impaired due to DR. Primary cause of DR in patients is high blood sugar, and it affects blood vessels available in the retinal cell. The recent advancement in deep learning and computer vision methods, and their automation applications can recognize the presence of DR in retinal cells and vessel images. Authors have proposed an attention-based hybrid model to recognize diabetes in early stage to prevent harmful clauses. Proposed methodology uses DenseNet121 architecture for convolution learning and then, the feature vector will be enhanced with channel and spatial attention model. The proposed architecture also simulates binary and multiclass classification to recognize the infection and the spreading of disease. Binary classification recognizes DR images either positive or negative, while multiclass classification represents an infection on a scale of 0-4. Simulation of the proposed methodology has achieved 98.57% and 99.01% accuracy for multiclass and binary classification, respectively. Simulation of the study also explored the impact of data augmentation to make the proposed model robust and generalized. Attention-based deep learning model has achieved remarkable accuracy to detect diabetic infection from retinal cellular images.
Collapse
Affiliation(s)
- Deep Kothadiya
- Artificial Intelligence and Data Analytics Lab (AIDA), CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia
- U & P U Patel Department of Computer Engineering, Chandubhai S. Patel Institute of Technology (CSPIT), Faculty of Technology (FTE), Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Amjad Rehman
- Artificial Intelligence and Data Analytics Lab (AIDA), CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Sidra Abbas
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Faten S Alamri
- Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Tanzila Saba
- Artificial Intelligence and Data Analytics Lab (AIDA), CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
15
|
Wadkin LE, Makarenko I, Parker NG, Shukurov A, Figueiredo FC, Lako M. Human Stem Cells for Ophthalmology: Recent Advances in Diagnostic Image Analysis and Computational Modelling. CURRENT STEM CELL REPORTS 2023; 9:57-66. [PMID: 38145008 PMCID: PMC10739444 DOI: 10.1007/s40778-023-00229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
Purpose of Review To explore the advances and future research directions in image analysis and computational modelling of human stem cells (hSCs) for ophthalmological applications. Recent Findings hSCs hold great potential in ocular regenerative medicine due to their application in cell-based therapies and in disease modelling and drug discovery using state-of-the-art 2D and 3D organoid models. However, a deeper characterisation of their complex, multi-scale properties is required to optimise their translation to clinical practice. Image analysis combined with computational modelling is a powerful tool to explore mechanisms of hSC behaviour and aid clinical diagnosis and therapy. Summary Many computational models draw on a variety of techniques, often blending continuum and discrete approaches, and have been used to describe cell differentiation and self-organisation. Machine learning tools are having a significant impact in model development and improving image classification processes for clinical diagnosis and treatment and will be the focus of much future research.
Collapse
Affiliation(s)
- L. E. Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - I. Makarenko
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - N. G. Parker
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - A. Shukurov
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - F. C. Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M. Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Wahab Sait AR. A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique. Diagnostics (Basel) 2023; 13:3120. [PMID: 37835861 PMCID: PMC10572365 DOI: 10.3390/diagnostics13193120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes. It affects a large portion of the population of the Kingdom of Saudi Arabia. Existing systems assist clinicians in treating DR patients. However, these systems entail significantly high computational costs. In addition, dataset imbalances may lead existing DR detection systems to produce false positive outcomes. Therefore, the author intended to develop a lightweight deep-learning (DL)-based DR-severity grading system that could be used with limited computational resources. The proposed model followed an image pre-processing approach to overcome the noise and artifacts found in fundus images. A feature extraction process using the You Only Look Once (Yolo) V7 technique was suggested. It was used to provide feature sets. The author employed a tailored quantum marine predator algorithm (QMPA) for selecting appropriate features. A hyperparameter-optimized MobileNet V3 model was utilized for predicting severity levels using images. The author generalized the proposed model using the APTOS and EyePacs datasets. The APTOS dataset contained 5590 fundus images, whereas the EyePacs dataset included 35,100 images. The outcome of the comparative analysis revealed that the proposed model achieved an accuracy of 98.0 and 98.4 and an F1 Score of 93.7 and 93.1 in the APTOS and EyePacs datasets, respectively. In terms of computational complexity, the proposed DR model required fewer parameters, fewer floating-point operations (FLOPs), a lower learning rate, and less training time to learn the key patterns of the fundus images. The lightweight nature of the proposed model can allow healthcare centers to serve patients in remote locations. The proposed model can be implemented as a mobile application to support clinicians in treating DR patients. In the future, the author will focus on improving the proposed model's efficiency to detect DR from low-quality fundus images.
Collapse
Affiliation(s)
- Abdul Rahaman Wahab Sait
- Department of Documents and Archive, Center of Documents and Administrative Communication, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| |
Collapse
|
17
|
Alwakid G, Gouda W, Humayun M. Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN. Diagnostics (Basel) 2023; 13:2375. [PMID: 37510123 PMCID: PMC10378524 DOI: 10.3390/diagnostics13142375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
One of the primary causes of blindness in the diabetic population is diabetic retinopathy (DR). Many people could have their sight saved if only DR were detected and treated in time. Numerous Deep Learning (DL)-based methods have been presented to improve human analysis. Using a DL model with three scenarios, this research classified DR and its severity stages from fundus images using the "APTOS 2019 Blindness Detection" dataset. Following the adoption of the DL model, augmentation methods were implemented to generate a balanced dataset with consistent input parameters across all test scenarios. As a last step in the categorization process, the DenseNet-121 model was employed. Several methods, including Enhanced Super-resolution Generative Adversarial Networks (ESRGAN), Histogram Equalization (HIST), and Contrast Limited Adaptive HIST (CLAHE), have been used to enhance image quality in a variety of contexts. The suggested model detected the DR across all five APTOS 2019 grading process phases with the highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100%. Further evaluation criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model were established with the help of APTOS 2019. Furthermore, comparing CLAHE + ESRGAN against both state-of-the-art technology and other recommended methods, it was found that its use was more effective in DR classification.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Al Jouf, Saudi Arabia
| | - Walaa Gouda
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Al Jouf, Saudi Arabia
| |
Collapse
|
18
|
Chaurasia BK, Raj H, Rathour SS, Singh PB. Transfer learning-driven ensemble model for detection of diabetic retinopathy disease. Med Biol Eng Comput 2023:10.1007/s11517-023-02863-6. [PMID: 37296285 DOI: 10.1007/s11517-023-02863-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
In this study, we propose an ensemble model for the detection of diabetic retinopathy (DR) illness that is driven by transfer learning. Due to diabetes, the DR is a problem that affects the eyes. The retinal blood vessels in a person with high blood sugar deteriorate. The blood arteries may enlarge and leak as a result, or they may close and stop the flow of blood. If DR is not treated, it can become severe, damage vision, and eventually result in blindness. Medical experts study the colored fundus photos for this reason in order to manually diagnose disease, however this is a perilous technique. As a result, the condition was automatically identified utilizing retinal scans and a number of computer vision-based methods. A model is trained on one task or datasets employing the transfer learning (TL) technique, and then the pre-trained models or weights are applied to another task or dataset. Six deep learning (DL)-based convolutional neural network (CNN) models were trained in this study using huge datasets of reasonable photos, including DenseNet-169, VGG-19, ResNet101-V2, Mobilenet-V2, and Inception-V3. We also applied a data-preprocessing strategy to improve the accuracy and lower the training costs in order to improve the results. The experimental results demonstrate that the suggested model works better than existing approaches on the same dataset, with an accuracy of up to 98%, and detects the stage of DR.
Collapse
Affiliation(s)
- Brijesh Kumar Chaurasia
- Department of Computer Science and Engineering, Pranveer Singh Institute of Technology, Kanpur, UP, India.
| | - Harsh Raj
- Department of Information Technology, Pranveer Singh Institute of Technology, Kanpur, UP, India
| | - Shreya Singh Rathour
- Department of Information Technology, Pranveer Singh Institute of Technology, Kanpur, UP, India
| | - Piyush Bhushan Singh
- Department of Information Technology, Pranveer Singh Institute of Technology, Kanpur, UP, India
| |
Collapse
|
19
|
Khan IU, Raiaan MAK, Fatema K, Azam S, Rashid RU, Mukta SH, Jonkman M, De Boer F. A Computer-Aided Diagnostic System to Identify Diabetic Retinopathy, Utilizing a Modified Compact Convolutional Transformer and Low-Resolution Images to Reduce Computation Time. Biomedicines 2023; 11:1566. [PMID: 37371661 DOI: 10.3390/biomedicines11061566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is the foremost cause of blindness in people with diabetes worldwide, and early diagnosis is essential for effective treatment. Unfortunately, the present DR screening method requires the skill of ophthalmologists and is time-consuming. In this study, we present an automated system for DR severity classification employing the fine-tuned Compact Convolutional Transformer (CCT) model to overcome these issues. We assembled five datasets to generate a more extensive dataset containing 53,185 raw images. Various image pre-processing techniques and 12 types of augmentation procedures were applied to improve image quality and create a massive dataset. A new DR-CCTNet model is proposed. It is a modification of the original CCT model to address training time concerns and work with a large amount of data. Our proposed model delivers excellent accuracy even with low-pixel images and still has strong performance with fewer images, indicating that the model is robust. We compare our model's performance with transfer learning models such as VGG19, VGG16, MobileNetV2, and ResNet50. The test accuracy of the VGG19, ResNet50, VGG16, and MobileNetV2 were, respectively, 72.88%, 76.67%, 73.22%, and 71.98%. Our proposed DR-CCTNet model to classify DR outperformed all of these with a 90.17% test accuracy. This approach provides a novel and efficient method for the detection of DR, which may lower the burden on ophthalmologists and expedite treatment for patients.
Collapse
Affiliation(s)
- Inam Ullah Khan
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh
| | | | - Kaniz Fatema
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sami Azam
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0909, Australia
| | - Rafi Ur Rashid
- Department of Computer Science and Engineering, Penn State University, State College, PA 16801, USA
| | - Saddam Hossain Mukta
- Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh
| | - Mirjam Jonkman
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0909, Australia
| | - Friso De Boer
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0909, Australia
| |
Collapse
|
20
|
Huang Y, Lin L, Cheng P, Lyu J, Tam R, Tang X. Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation. Diagnostics (Basel) 2023; 13:diagnostics13101664. [PMID: 37238149 DOI: 10.3390/diagnostics13101664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Although deep learning-based diabetic retinopathy (DR) classification methods typically benefit from well-designed architectures of convolutional neural networks, the training setting also has a non-negligible impact on prediction performance. The training setting includes various interdependent components, such as an objective function, a data sampling strategy, and a data augmentation approach. To identify the key components in a standard deep learning framework (ResNet-50) for DR grading, we systematically analyze the impact of several major components. Extensive experiments are conducted on a publicly available dataset EyePACS. We demonstrate that (1) the DR grading framework is sensitive to input resolution, objective function, and composition of data augmentation; (2) using mean square error as the loss function can effectively improve the performance with respect to a task-specific evaluation metric, namely the quadratically weighted Kappa; (3) utilizing eye pairs boosts the performance of DR grading and; (4) using data resampling to address the problem of imbalanced data distribution in EyePACS hurts the performance. Based on these observations and an optimal combination of the investigated components, our framework, without any specialized network design, achieves a state-of-the-art result (0.8631 for Kappa) on the EyePACS test set (a total of 42,670 fundus images) with only image-level labels. We also examine the proposed training practices on other fundus datasets and other network architectures to evaluate their generalizability. Our codes and pre-trained model are available online.
Collapse
Affiliation(s)
- Yijin Huang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Li Lin
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Pujin Cheng
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junyan Lyu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Roger Tam
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaoying Tang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Hassan S, Alrajeh NA, Mohammed EA, Khan S. Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy. Biomimetics (Basel) 2023; 8:biomimetics8020187. [PMID: 37218773 DOI: 10.3390/biomimetics8020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
The medical and healthcare domains require automatic diagnosis systems (ADS) for the identification of health problems with technological advancements. Biomedical imaging is one of the techniques used in computer-aided diagnosis systems. Ophthalmologists examine fundus images (FI) to detect and classify stages of diabetic retinopathy (DR). DR is a chronic disease that appears in patients with long-term diabetes. Unattained patients can lead to severe conditions of DR, such as retinal eye detachments. Therefore, early detection and classification of DR are crucial to ward off advanced stages of DR and preserve the vision. Data diversity in an ensemble model refers to the use of multiple models trained on different subsets of data to improve the ensemble's overall performance. In the context of an ensemble model based on a convolutional neural network (CNN) for diabetic retinopathy, this could involve training multiple CNNs on various subsets of retinal images, including images from different patients or those captured using distinct imaging techniques. By combining the predictions of these multiple models, the ensemble model can potentially make more accurate predictions than a single prediction. In this paper, an ensemble model (EM) of three CNN models is proposed for limited and imbalanced DR data using data diversity. Detecting the Class 1 stage of DR is important to control this fatal disease in time. CNN-based EM is incorporated to classify the five classes of DR while giving attention to the early stage, i.e., Class 1. Furthermore, data diversity is created by applying various augmentation and generation techniques with affine transformation. Compared to the single model and other existing work, the proposed EM has achieved better multi-class classification accuracy, precision, sensitivity, and specificity of 91.06%, 91.00%, 95.01%, and 98.38%, respectively.
Collapse
Affiliation(s)
- Saima Hassan
- Institute of Computing, Kohat University of Science and Technology (KUST), Kohat City 24000, Pakistan
| | - Nabil A Alrajeh
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 1433, Saudi Arabia
| | - Emad A Mohammed
- Department of Engineering, Faculty of Science, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Shafiullah Khan
- Institute of Computing, Kohat University of Science and Technology (KUST), Kohat City 24000, Pakistan
| |
Collapse
|
22
|
Khan MB, Ahmad M, Yaakob SB, Shahrior R, Rashid MA, Higa H. Automated Diagnosis of Diabetic Retinopathy Using Deep Learning: On the Search of Segmented Retinal Blood Vessel Images for Better Performance. Bioengineering (Basel) 2023; 10:bioengineering10040413. [PMID: 37106599 PMCID: PMC10136337 DOI: 10.3390/bioengineering10040413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic retinopathy is one of the most significant retinal diseases that can lead to blindness. As a result, it is critical to receive a prompt diagnosis of the disease. Manual screening can result in misdiagnosis due to human error and limited human capability. In such cases, using a deep learning-based automated diagnosis of the disease could aid in early detection and treatment. In deep learning-based analysis, the original and segmented blood vessels are typically used for diagnosis. However, it is still unclear which approach is superior. In this study, a comparison of two deep learning approaches (Inception v3 and DenseNet-121) was performed on two different datasets of colored images and segmented images. The study’s findings revealed that the accuracy for original images on both Inception v3 and DenseNet-121 equaled 0.8 or higher, whereas the segmented retinal blood vessels under both approaches provided an accuracy of just greater than 0.6, demonstrating that the segmented vessels do not add much utility to the deep learning-based analysis. The study’s findings show that the original-colored images are more significant in diagnosing retinopathy than the extracted retinal blood vessels.
Collapse
|
23
|
Alwakid G, Gouda W, Humayun M. Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement. Healthcare (Basel) 2023; 11:863. [PMID: 36981520 PMCID: PMC10048517 DOI: 10.3390/healthcare11060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Vision loss can be avoided if diabetic retinopathy (DR) is diagnosed and treated promptly. The main five DR stages are none, moderate, mild, proliferate, and severe. In this study, a deep learning (DL) model is presented that diagnoses all five stages of DR with more accuracy than previous methods. The suggested method presents two scenarios: case 1 with image enhancement using a contrast limited adaptive histogram equalization (CLAHE) filtering algorithm in conjunction with an enhanced super-resolution generative adversarial network (ESRGAN), and case 2 without image enhancement. Augmentation techniques were then performed to generate a balanced dataset utilizing the same parameters for both cases. Using Inception-V3 applied to the Asia Pacific Tele-Ophthalmology Society (APTOS) datasets, the developed model achieved an accuracy of 98.7% for case 1 and 80.87% for case 2, which is greater than existing methods for detecting the five stages of DR. It was demonstrated that using CLAHE and ESRGAN improves a model's performance and learning ability.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Al Jouf, Saudi Arabia;
| | - Walaa Gouda
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt;
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Al Jouf, Saudi Arabia
| |
Collapse
|
24
|
Rayavel P, Murukesh C. Comparative analysis of deep learning classifiers for diabetic retinopathy identification and detection. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2168851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- P. Rayavel
- Department of Computer Science and Engineering (Cybersecurity), Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India
| | - C. Murukesh
- Department of Electronics and Communication Engineering, Velammal Engineering College, Chennai, Tamil Nadu, India
| |
Collapse
|
25
|
Shahriari MH, Sabbaghi H, Asadi F, Hosseini A, Khorrami Z. Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: A systematic review. Surv Ophthalmol 2023; 68:42-53. [PMID: 35970233 DOI: 10.1016/j.survophthal.2022.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
We review the application of artificial intelligence (AI) techniques in the screening, diagnosis, and classification of diabetic macular edema (DME) by searching six databases- PubMed, Scopus, Web of Science, Science Direct, IEEE, and ACM- from January 1, 2005 to July 4, 2021. A total of 879 articles were extracted, and by applying inclusion and exclusion criteria, 38 articles were selected for more evaluation. The methodological quality of included studies was evaluated using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS-2). We provide an overview of the current state of various AI techniques for DME screening, diagnosis, and classification using retinal imaging modalities such as optical coherence tomography (OCT) and color fundus photography (CFP). Based on our findings, deep learning models have an extraordinary capacity to provide an accurate and efficient system for DME screening and diagnosis. Using these in the processing of modalities leads to a significant increase in sensitivity and specificity values. The use of decision support systems and applications based on AI in processing retinal images provided by OCT and CFP increases the sensitivity and specificity in DME screening and detection.
Collapse
Affiliation(s)
- Mohammad Hasan Shahriari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azamosadat Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Khorrami
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Pavithra K, Kumar P, Geetha M, Bhandary SV. Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Alwakid G, Gouda W, Humayun M, Jhanjhi NZ. Deep learning-enhanced diabetic retinopathy image classification. Digit Health 2023; 9:20552076231194942. [PMID: 37588156 PMCID: PMC10426308 DOI: 10.1177/20552076231194942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Objective Diabetic retinopathy (DR) can sometimes be treated and prevented from causing irreversible vision loss if caught and treated properly. In this work, a deep learning (DL) model is employed to accurately identify all five stages of DR. Methods The suggested methodology presents two examples, one with and one without picture augmentation. A balanced dataset meeting the same criteria in both cases is then generated using augmentative methods. The DenseNet-121-rendered model on the Asia Pacific Tele-Ophthalmology Society (APTOS) and dataset for diabetic retinopathy (DDR) datasets performed exceptionally well when compared to other methods for identifying the five stages of DR. Results Our propose model achieved the highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100% for the APTOS dataset, and the highest test accuracy of 79.67%, top-2 accuracy of 92.%76, and top-3 accuracy of 98.94% for the DDR dataset. Additional criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model were established with the help of APTOS and DDR. Conclusions It was discovered that feeding a model with higher-quality photographs increased its efficiency and ability for learning, as opposed to both state-of-the-art technology and the other, non-enhanced model.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Walaa Gouda
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia
| | | |
Collapse
|
28
|
Selvachandran G, Quek SG, Paramesran R, Ding W, Son LH. Developments in the detection of diabetic retinopathy: a state-of-the-art review of computer-aided diagnosis and machine learning methods. Artif Intell Rev 2023; 56:915-964. [PMID: 35498558 PMCID: PMC9038999 DOI: 10.1007/s10462-022-10185-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 02/02/2023]
Abstract
The exponential increase in the number of diabetics around the world has led to an equally large increase in the number of diabetic retinopathy (DR) cases which is one of the major complications caused by diabetes. Left unattended, DR worsens the vision and would lead to partial or complete blindness. As the number of diabetics continue to increase exponentially in the coming years, the number of qualified ophthalmologists need to increase in tandem in order to meet the demand for screening of the growing number of diabetic patients. This makes it pertinent to develop ways to automate the detection process of DR. A computer aided diagnosis system has the potential to significantly reduce the burden currently placed on the ophthalmologists. Hence, this review paper is presented with the aim of summarizing, classifying, and analyzing all the recent development on automated DR detection using fundus images from 2015 up to this date. Such work offers an unprecedentedly thorough review of all the recent works on DR, which will potentially increase the understanding of all the recent studies on automated DR detection, particularly on those that deploys machine learning algorithms. Firstly, in this paper, a comprehensive state-of-the-art review of the methods that have been introduced in the detection of DR is presented, with a focus on machine learning models such as convolutional neural networks (CNN) and artificial neural networks (ANN) and various hybrid models. Each AI will then be classified according to its type (e.g. CNN, ANN, SVM), its specific task(s) in performing DR detection. In particular, the models that deploy CNN will be further analyzed and classified according to some important properties of the respective CNN architectures of each model. A total of 150 research articles related to the aforementioned areas that were published in the recent 5 years have been utilized in this review to provide a comprehensive overview of the latest developments in the detection of DR. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-022-10185-6.
Collapse
Affiliation(s)
- Ganeshsree Selvachandran
- Department of Actuarial Science and Applied Statistics, Faculty of Business & Management, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Shio Gai Quek
- Department of Actuarial Science and Applied Statistics, Faculty of Business & Management, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Raveendran Paramesran
- Institute of Computer Science and Digital Innovation, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong, 226019 People’s Republic of China
| | - Le Hoang Son
- VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
29
|
Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ. Recent trends and advances in fundus image analysis: A review. Comput Biol Med 2022; 151:106277. [PMID: 36370579 DOI: 10.1016/j.compbiomed.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.
Collapse
Affiliation(s)
- Shahzaib Iqbal
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan; Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Junaid Nawaz
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
30
|
Narhari BB, K.M B, Sayyad AD, G.S S. Deep CNN-based feature extraction with optimised LSTM for enhanced diabetic retinopathy detection. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bansode Balbhim Narhari
- Electronics and Telecommunication Engineering, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Bakwad K.M
- Electronics Engineering, MSBTE, Mumbai, India
| | - Ajij Dildar Sayyad
- Academic Electronics and communication, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Sable G.S
- Head of Department, Electronics and Telecommunication, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| |
Collapse
|
31
|
Srinivasan V, Strodthoff N, Ma J, Binder A, Müller KR, Samek W. To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy. PLoS One 2022; 17:e0274291. [PMID: 36256665 PMCID: PMC9578637 DOI: 10.1371/journal.pone.0274291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
There is an increasing number of medical use cases where classification algorithms based on deep neural networks reach performance levels that are competitive with human medical experts. To alleviate the challenges of small dataset sizes, these systems often rely on pretraining. In this work, we aim to assess the broader implications of these approaches in order to better understand what type of pretraining works reliably (with respect to performance, robustness, learned representation etc.) in practice and what type of pretraining dataset is best suited to achieve good performance in small target dataset size scenarios. Considering diabetic retinopathy grading as an exemplary use case, we compare the impact of different training procedures including recently established self-supervised pretraining methods based on contrastive learning. To this end, we investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions. Our results indicate that models initialized from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions. In particular, self-supervised models show further benefits to supervised models. Self-supervised models with initialization from ImageNet pretraining not only report higher performance, they also reduce overfitting to large lesions along with improvements in taking into account minute lesions indicative of the progression of the disease. Understanding the effects of pretraining in a broader sense that goes beyond simple performance comparisons is of crucial importance for the broader medical imaging community beyond the use case considered in this work.
Collapse
Affiliation(s)
- Vignesh Srinivasan
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Nils Strodthoff
- School of Medicine and Health Services, Oldenburg University, Oldenburg, Germany
| | - Jackie Ma
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Alexander Binder
- Singapore Institute of Technology, ICT Cluster, Singapore, Singapore
- Department of Informatics, Oslo University, Oslo, Norway
| | - Klaus-Robert Müller
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
- Max Planck Institute for Informatics, Saarbrücken, Germany
- * E-mail: (KRM); (WS)
| | - Wojciech Samek
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- * E-mail: (KRM); (WS)
| |
Collapse
|
32
|
Classification of diabetic retinopathy with feature selection over deep features using nature-inspired wrapper methods. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Li H, Dong X, Shen W, Ge F, Li H. Resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading. Comput Biol Med 2022; 149:105970. [DOI: 10.1016/j.compbiomed.2022.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/23/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
|
34
|
Dubey S, Dixit M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14471-14525. [PMID: 36185322 PMCID: PMC9510498 DOI: 10.1007/s11042-022-13841-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.
Collapse
Affiliation(s)
- Shradha Dubey
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| | - Manish Dixit
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| |
Collapse
|
35
|
Nadeem MW, Goh HG, Hussain M, Liew SY, Andonovic I, Khan MA. Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2022; 22:6780. [PMID: 36146130 PMCID: PMC9505428 DOI: 10.3390/s22186780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
Deep learning (DL) enables the creation of computational models comprising multiple processing layers that learn data representations at multiple levels of abstraction. In the recent past, the use of deep learning has been proliferating, yielding promising results in applications across a growing number of fields, most notably in image processing, medical image analysis, data analysis, and bioinformatics. DL algorithms have also had a significant positive impact through yielding improvements in screening, recognition, segmentation, prediction, and classification applications across different domains of healthcare, such as those concerning the abdomen, cardiac, pathology, and retina. Given the extensive body of recent scientific contributions in this discipline, a comprehensive review of deep learning developments in the domain of diabetic retinopathy (DR) analysis, viz., screening, segmentation, prediction, classification, and validation, is presented here. A critical analysis of the relevant reported techniques is carried out, and the associated advantages and limitations highlighted, culminating in the identification of research gaps and future challenges that help to inform the research community to develop more efficient, robust, and accurate DL models for the various challenges in the monitoring and diagnosis of DR.
Collapse
Affiliation(s)
- Muhammad Waqas Nadeem
- Faculty of Information and Communication Technology (FICT), Universiti Tunku Abdul Rahman (UTAR), Kampar 31900, Malaysia
| | - Hock Guan Goh
- Faculty of Information and Communication Technology (FICT), Universiti Tunku Abdul Rahman (UTAR), Kampar 31900, Malaysia
| | - Muzammil Hussain
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54000, Pakistan
| | - Soung-Yue Liew
- Faculty of Information and Communication Technology (FICT), Universiti Tunku Abdul Rahman (UTAR), Kampar 31900, Malaysia
| | - Ivan Andonovic
- Department of Electronic and Electrical Engineering, Royal College Building, University of Strathclyde, 204 George St., Glasgow G1 1XW, UK
| | - Muhammad Adnan Khan
- Pattern Recognition and Machine Learning Lab, Department of Software, Gachon University, Seongnam 13557, Korea
- Faculty of Computing, Riphah School of Computing and Innovation, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
36
|
Özbay E. An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Jena M, Mishra D, Mishra SP, Mallick PK. A Tailored Complex Medical Decision Analysis Model for Diabetic Retinopathy Classification Based on Optimized Un-Supervised Feature Learning Approach. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Ragab M, Aljedaibi WH, Nahhas AF, Alzahrani IR. Computer aided diagnosis of diabetic retinopathy grading using spiking neural network. COMPUTERS AND ELECTRICAL ENGINEERING 2022; 101:108014. [DOI: 10.1016/j.compeleceng.2022.108014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
|
39
|
A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Med Biol Eng Comput 2022; 60:2015-2038. [PMID: 35545738 PMCID: PMC9225981 DOI: 10.1007/s11517-022-02564-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy (DR) is a serious disease that may cause vision loss unawares without any alarm. Therefore, it is essential to scan and audit the DR progress continuously. In this respect, deep learning techniques achieved great success in medical image analysis. Deep convolution neural network (CNN) architectures are widely used in multi-label (ML) classification. It helps in diagnosing normal and various DR grades: mild, moderate, and severe non-proliferative DR (NPDR) and proliferative DR (PDR). DR grades are formulated by appearing multiple DR lesions simultaneously on the color retinal fundus images. Many lesion types have various features that are difficult to segment and distinguished by utilizing conventional and hand-crafted methods. Therefore, the practical solution is to utilize an effective CNN model. In this paper, we present a novel hybrid, deep learning technique, which is called E-DenseNet. We integrated EyeNet and DenseNet models based on transfer learning. We customized the traditional EyeNet by inserting the dense blocks and optimized the resulting hybrid E-DensNet model's hyperparameters. The proposed system based on the E-DenseNet model can accurately diagnose healthy and different DR grades from various small and large ML color fundus images. We trained and tested our model on four different datasets that were published from 2006 to 2019. The proposed system achieved an average accuracy (ACC), sensitivity (SEN), specificity (SPE), Dice similarity coefficient (DSC), the quadratic Kappa score (QKS), and the calculation time (T) in minutes (m) equal [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], 0.883, and 3.5m respectively. The experiments show promising results as compared with other systems.
Collapse
|
40
|
OLTU B, KARACA BK, ERDEM H, ÖZGÜR A. A systematic review of transfer learning-based approaches for diabetic retinopathy detection. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cases of diabetes and related diabetic retinopathy (DR) have been increasing at an alarming rate in modern times. Early detection of DR is an important problem since it may cause permanent blindness in the late stages. In the last two decades, many different approaches have been applied in DR detection. Reviewing academic literature shows that deep neural networks (DNNs) have become the most preferred approach for DR detection. Among these DNN approaches, Convolutional Neural Network (CNN) models are the most used ones in the field of medical image classification. Designing a new CNN architecture is a tedious and time-consuming approach. Additionally, training an enormous number of parameters is also a difficult task. Due to this reason, instead of training CNNs from scratch, using pre-trained models has been suggested in recent years as transfer learning approach. Accordingly, the present study as a review focuses on DNN and Transfer Learning based applications of DR detection considering 43 publications between 2015 and 2021. The published papers are summarized using 3 figures and 10 tables, giving information about 29 pre-trained CNN models, 13 DR data sets and standard performance metrics.
Collapse
Affiliation(s)
- Burcu OLTU
- BAŞKENT ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ
| | | | | | | |
Collapse
|
41
|
Fatima, Imran M, Ullah A, Arif M, Noor R. A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network. Comput Biol Med 2022; 145:105424. [DOI: 10.1016/j.compbiomed.2022.105424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
42
|
Balancing Data through Data Augmentation Improves the Generality of Transfer Learning for Diabetic Retinopathy Classification. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The incidence of diabetes in Mauritius is amongst the highest in the world. Diabetic retinopathy (DR), a complication resulting from the disease, can lead to blindness if not detected early. The aim of this work was to investigate the use of transfer learning and data augmentation for the classification of fundus images into five different stages of diabetic retinopathy. The five stages are No DR, Mild nonproliferative DR, Moderate nonproliferative DR, Severe nonproliferative DR and Proliferative. To this end, deep transfer learning and three pre-trained models, VGG16, ResNet50 and DenseNet169, were used to classify the APTOS dataset. The preliminary experiments resulted in low training and validation accuracies, and hence, the APTOS dataset was augmented while ensuring a balance between the five classes. This dataset was then used to train the three models, and the best three models were used to classify a blind Mauritian test datum. We found that the ResNet50 model produced the best results out of the three models and also achieved very good accuracies for the five classes. The classification of class-4 Mauritian fundus images, severe cases, produced some unexpected results, with some images being classified as mild, and therefore needs to be further investigated.
Collapse
|
43
|
Segmenting Retinal Vessels Using a Shallow Segmentation Network to Aid Ophthalmic Analysis. MATHEMATICS 2022. [DOI: 10.3390/math10091536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Retinal blood vessels possess a complex structure in the retina and are considered an important biomarker for several retinal diseases. Ophthalmic diseases result in specific changes in the retinal vasculature; for example, diabetic retinopathy causes the retinal vessels to swell, and depending upon disease severity, fluid or blood can leak. Similarly, hypertensive retinopathy causes a change in the retinal vasculature due to the thinning of these vessels. Central retinal vein occlusion (CRVO) is a phenomenon in which the main vein causes drainage of the blood from the retina and this main vein can close completely or partially with symptoms of blurred vision and similar eye problems. Considering the importance of the retinal vasculature as an ophthalmic disease biomarker, ophthalmologists manually analyze retinal vascular changes. Manual analysis is a tedious task that requires constant observation to detect changes. The deep learning-based methods can ease the problem by learning from the annotations provided by an expert ophthalmologist. However, current deep learning-based methods are relatively inaccurate, computationally expensive, complex, and require image preprocessing for final detection. Moreover, existing methods are unable to provide a better true positive rate (sensitivity), which shows that the model can predict most of the vessel pixels. Therefore, this study presents the so-called vessel segmentation ultra-lite network (VSUL-Net) to accurately extract the retinal vasculature from the background. The proposed VSUL-Net comprises only 0.37 million trainable parameters and uses an original image as input without preprocessing. The VSUL-Net uses a retention block that specifically maintains the larger feature map size and low-level spatial information transfer. This retention block results in better sensitivity of the proposed VSUL-Net without using expensive preprocessing schemes. The proposed method was tested on three publicly available datasets: digital retinal images for vessel extraction (DRIVE), structured analysis of retina (STARE), and children’s heart health study in England database (CHASE-DB1) for retinal vasculature segmentation. The experimental results demonstrated that VSUL-Net provides robust segmentation of retinal vasculature with sensitivity (Sen), specificity (Spe), accuracy (Acc), and area under the curve (AUC) values of 83.80%, 98.21%, 96.95%, and 98.54%, respectively, for DRIVE, 81.73%, 98.35%, 97.17%, and 98.69%, respectively, for CHASE-DB1, and 86.64%, 98.13%, 97.27%, and 99.01%, respectively, for STARE datasets. The proposed method provides an accurate segmentation mask for deep ophthalmic analysis.
Collapse
|
44
|
Jabbar MK, Yan J, Xu H, Ur Rehman Z, Jabbar A. Transfer Learning-Based Model for Diabetic Retinopathy Diagnosis Using Retinal Images. Brain Sci 2022; 12:535. [PMID: 35624922 PMCID: PMC9139157 DOI: 10.3390/brainsci12050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Diabetic retinopathy (DR) is a visual obstacle caused by diabetic disease, which forms because of long-standing diabetes mellitus, which damages the retinal blood vessels. This disease is considered one of the principal causes of sightlessness and accounts for more than 158 million cases all over the world. Since early detection and classification could diminish the visual impairment, it is significant to develop an automated DR diagnosis method. Although deep learning models provide automatic feature extraction and classification, training such models from scratch requires a larger annotated dataset. The availability of annotated training datasets is considered a core issue for implementing deep learning in the classification of medical images. The models based on transfer learning are widely adopted by the researchers to overcome annotated data insufficiency problems and computational overhead. In the proposed study, features are extracted from fundus images using the pre-trained network VGGNet and combined with the concept of transfer learning to improve classification performance. To deal with data insufficiency and unbalancing problems, we employed various data augmentation operations differently on each grade of DR. The results of the experiment indicate that the proposed framework (which is evaluated on the benchmark dataset) outperformed advanced methods in terms of accurateness. Our technique, in combination with handcrafted features, could be used to improve classification accuracy.
Collapse
Affiliation(s)
- Muhammad Kashif Jabbar
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; (M.K.J.); (J.Y.)
| | - Jianzhuo Yan
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; (M.K.J.); (J.Y.)
| | - Hongxia Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; (M.K.J.); (J.Y.)
| | - Zaka Ur Rehman
- Department of Computer Science and IT, Gujrat Campus, The University of Lahore, Gujrat 50700, Pakistan;
| | - Ayesha Jabbar
- Department of Science & Technology, University of Education, Lahore 54770, Pakistan;
| |
Collapse
|
45
|
Pugal Priya R, Saradadevi Sivarani T, Gnana Saravanan A. Deep long and short term memory based Red Fox optimization algorithm for diabetic retinopathy detection and classification. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3560. [PMID: 34865312 DOI: 10.1002/cnm.3560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Because of retina abnormalities of diabetic patients, the most common vision-threatening disease is diabetic retinopathy (DR). The DR diagnosis and prevention are challenging tasks as they may lead to vision loss. According to the literature analysis, the shortcomings in existing studies, such as failed to reduce the feature dimension, higher execution time, and higher computational cost, unable to tune the hyper-parameters, such as a number of hidden layers and learning rate, more computational complexities, higher cost, and so forth, during DR classification. To tackle these problems, we proposed a deep long- and short-term memory (LSTM) in a neural network with Red Fox optimization (deep LSTM-RFO) algorithm for DR classification. The four major components involved in the proposed methods are image preprocessing, segmentation, feature extraction, and classification. At first, an adaptive histogram equalization and histogram equalization model performs the fundus image preprocessing, thereby neglecting the noise and improving the contrast level of an image. Next, an adaptive watershed segmentation model effectively segments the lesion region based on the optic disc color and size of hemorrhages. At the third stage, we have extracted statistical, intensity, color, and shape features. Finally, the single normal class with three abnormal classes such as mild non-proliferative diabetic retinopathy, moderate NPDR, and severe NPDR are accurately classified using the deep LSTM-RFO algorithm. Experimentally, the MESSIDOR, STARE, and DRIVE datasets are used for both training and validation. MATLAB software performs the implementation process with respect to various evaluation criteria used. However, the proposed method accomplished superior performance, such as 98.45% specificity, 96.78% sensitivity, 97.92% precision, 96.89% recall, and 97.93% F-score results in terms of DR classification than previous methods.
Collapse
Affiliation(s)
- Raju Pugal Priya
- Department of Electronics and Communication Engineering, Arunachala College of Engineering for Women, Kanyakumari, India
| | | | | |
Collapse
|
46
|
Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques. SENSORS 2022; 22:s22051803. [PMID: 35270949 PMCID: PMC8914671 DOI: 10.3390/s22051803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Diabetic Retinopathy (DR) is a predominant cause of visual impairment and loss. Approximately 285 million worldwide population is affected with diabetes, and one-third of these patients have symptoms of DR. Specifically, it tends to affect the patients with 20 years or more with diabetes, but it can be reduced by early detection and proper treatment. Diagnosis of DR by using manual methods is a time-consuming and expensive task which involves trained ophthalmologists to observe and evaluate DR using digital fundus images of the retina. This study aims to systematically find and analyze high-quality research work for the diagnosis of DR using deep learning approaches. This research comprehends the DR grading, staging protocols and also presents the DR taxonomy. Furthermore, identifies, compares, and investigates the deep learning-based algorithms, techniques, and, methods for classifying DR stages. Various publicly available dataset used for deep learning have also been analyzed and dispensed for descriptive and empirical understanding for real-time DR applications. Our in-depth study shows that in the last few years there has been an increasing inclination towards deep learning approaches. 35% of the studies have used Convolutional Neural Networks (CNNs), 26% implemented the Ensemble CNN (ECNN) and, 13% Deep Neural Networks (DNN) are amongst the most used algorithms for the DR classification. Thus using the deep learning algorithms for DR diagnostics have future research potential for DR early detection and prevention based solution.
Collapse
|
47
|
Faura G, Boix-Lemonche G, Holmeide AK, Verkauskiene R, Volke V, Sokolovska J, Petrovski G. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning. SENSORS 2022; 22:s22030718. [PMID: 35161465 PMCID: PMC8839630 DOI: 10.3390/s22030718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022]
Abstract
In this review, a selection of works on the sensing of biomarkers related to diabetes mellitus (DM) and diabetic retinopathy (DR) are presented, with the scope of helping and encouraging researchers to design sensor-array machine-learning (ML)-supported devices for robust, fast, and cost-effective early detection of these devastating diseases. First, we highlight the social relevance of developing systematic screening programs for such diseases and how sensor-arrays and ML approaches could ease their early diagnosis. Then, we present diverse works related to the colorimetric and electrochemical sensing of biomarkers related to DM and DR with non-invasive sampling (e.g., urine, saliva, breath, tears, and sweat samples), with a special mention to some already-existing sensor arrays and ML approaches. We finally highlight the great potential of the latter approaches for the fast and reliable early diagnosis of DM and DR.
Collapse
Affiliation(s)
- Georgina Faura
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Gerard Boix-Lemonche
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
| | | | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania;
| | - Vallo Volke
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
- Institute of Biomedical and Transplant Medicine, Department of Medical Sciences, Tartu University Hospital, L. Puusepa Street, 51014 Tartu, Estonia
| | | | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Correspondence: ; Tel.: +47-9222-6158
| |
Collapse
|
48
|
Review of Machine Learning Applications Using Retinal Fundus Images. Diagnostics (Basel) 2022; 12:diagnostics12010134. [PMID: 35054301 PMCID: PMC8774893 DOI: 10.3390/diagnostics12010134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Automating screening and diagnosis in the medical field saves time and reduces the chances of misdiagnosis while saving on labor and cost for physicians. With the feasibility and development of deep learning methods, machines are now able to interpret complex features in medical data, which leads to rapid advancements in automation. Such efforts have been made in ophthalmology to analyze retinal images and build frameworks based on analysis for the identification of retinopathy and the assessment of its severity. This paper reviews recent state-of-the-art works utilizing the color fundus image taken from one of the imaging modalities used in ophthalmology. Specifically, the deep learning methods of automated screening and diagnosis for diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma are investigated. In addition, the machine learning techniques applied to the retinal vasculature extraction from the fundus image are covered. The challenges in developing these systems are also discussed.
Collapse
|
49
|
Coronavirus Pneumonia Classification using X-Ray and CT Scan Images with Deep Convolutional Neural Networks Models. JOURNAL OF INFORMATION TECHNOLOGY RESEARCH 2022. [DOI: 10.4018/jitr.299391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pneumonia is a life-threatening infectious disease affecting one or both lungs in humans. There are mainly two types of pneumonia: bacterial and viral. Likewise, patients with coronavirus can develop symptoms that belong to the common flu, pneumonia, and other respiratory diseases. Chest X-rays are the common method used to diagnose coronavirus pneumonia and it needs a medical expert to evaluate the result of X-ray. Furthermore, DL has garnered great attention among researchers in recent years in a variety of application domains such as medical image processing, computer vision, bioinformatics, and many others. In this paper, we present a comparison of Deep Convolutional Neural Networks models for automatically binary classification query chest X-ray & CT images dataset with the goal of taking precision tools to health professionals based on fined recent versions of ResNet50, InceptionV3, and VGGNet. The experiments were conducted using a chest X-ray & CT open dataset of 5856 images and confusion matrices are used to evaluate model performances.
Collapse
|
50
|
Arsalan M, Haider A, Choi J, Park KR. Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures. J Pers Med 2021; 12:jpm12010007. [PMID: 35055322 PMCID: PMC8777982 DOI: 10.3390/jpm12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Retinal blood vessels are considered valuable biomarkers for the detection of diabetic retinopathy, hypertensive retinopathy, and other retinal disorders. Ophthalmologists analyze retinal vasculature by manual segmentation, which is a tedious task. Numerous studies have focused on automatic retinal vasculature segmentation using different methods for ophthalmic disease analysis. However, most of these methods are computationally expensive and lack robustness. This paper proposes two new shallow deep learning architectures: dual-stream fusion network (DSF-Net) and dual-stream aggregation network (DSA-Net) to accurately detect retinal vasculature. The proposed method uses semantic segmentation in raw color fundus images for the screening of diabetic and hypertensive retinopathies. The proposed method's performance is assessed using three publicly available fundus image datasets: Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of Retina (STARE), and Children Heart Health Study in England Database (CHASE-DB1). The experimental results revealed that the proposed method provided superior segmentation performance with accuracy (Acc), sensitivity (SE), specificity (SP), and area under the curve (AUC) of 96.93%, 82.68%, 98.30%, and 98.42% for DRIVE, 97.25%, 82.22%, 98.38%, and 98.15% for CHASE-DB1, and 97.00%, 86.07%, 98.00%, and 98.65% for STARE datasets, respectively. The experimental results also show that the proposed DSA-Net provides higher SE compared to the existing approaches. It means that the proposed method detected the minor vessels and provided the least false negatives, which is extremely important for diagnosis. The proposed method provides an automatic and accurate segmentation mask that can be used to highlight the vessel pixels. This detected vasculature can be utilized to compute the ratio between the vessel and the non-vessel pixels and distinguish between diabetic and hypertensive retinopathies, and morphology can be analyzed for related retinal disorders.
Collapse
|