1
|
McLellan H, Rijnhout TWH, Peterson LM, Stuhlmiller DFE, Edwards J, Jarrouj A, Samanta D, Tager A, Tan ECTH. Prehospital Active and Passive Warming in Trauma Patients. Air Med J 2023; 42:252-258. [PMID: 37356885 DOI: 10.1016/j.amj.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Hypothermia is common among trauma patients and can lead to a serious rise in morbidity and mortality. This study was performed to investigate the effect of active and passive warming measures implemented in the prehospital phase on the body temperature of trauma patients. METHODS In a multicenter, multinational prospective observational design, the effect of active and passive warming measures on the incidence of hypothermia was investigated. Adult trauma patients who were transported by helicopter emergency medical services (HEMS) or ground emergency medical services with an HEMS physician directly from the scene of injury were included. Four HEMS/ground emergency medical services programs from Canada, the United States, and the Netherlands participated. RESULTS A total of 80 patients (n = 20 per site) were included. Eleven percent had hypothermia on presentation, and the initial evaluation occurred predominantly within 60 minutes after injury. In-line fluid warmers and blankets were the most frequently used active and passive warming measures, respectively. Independent risk factors for a negative change in body temperature were transportation by ground ambulance (odds ratio = 3.20; 95% confidence interval, 1.06-11.49; P = .03) and being wet on initial presentation (odds ratio = 3.64; 95% confidence interval, 0.99-13.36; P = .05). CONCLUSION For adult patients transported from the scene of injury to a trauma center, active and passive warming measures, most notably the removal of wet clothing, were associated with a favorable outcome, whereas wet patients and ground ambulance transport were associated with an unfavorable outcome with respect to temperature.
Collapse
Affiliation(s)
- Heather McLellan
- Advanced Studies in Critical Care Nursing, Mount Royal University, Mount Royal Gate, Calgary, Alberta, Canada.
| | - Tim W H Rijnhout
- Department of Trauma Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Michael Peterson
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV; HealthNet Aeromedical Services, Charleston, WV
| | | | - Jerry Edwards
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV
| | - Aous Jarrouj
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV
| | - Damayanti Samanta
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV
| | - Alfred Tager
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV
| | - Edward C T H Tan
- Department of Trauma Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Hulse W, Bahr TM, Fredrickson L, Canfield CM, Friddle K, Pysher TJ, Ilstrup SJ, Ohls RK, Christensen RD. Warming blood products for transfusion to neonates: In vitro assessments. Transfusion 2020; 60:1924-1928. [PMID: 32776545 DOI: 10.1111/trf.16007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Blood products may be transfused into neonates at temperatures at or below room temperature. The benefits and risks of warming blood to 37°C are not defined in this population or with the equipment used in neonates. Physiologic warming might enhance product effectiveness or decrease transfusion-associated hypothermia. STUDY DESIGN AND METHODS We utilized an in vitro model of neonatal transfusions, with a syringe pump, blood tubing, and 24-gauge catheter and compared current practice (cold products) vs an inline blood warmer. Transfusions were performed rapidly (30 minutes) and slower (120 minutes) to model emergent vs routine situations. We tested red blood cells, fresh-frozen plasma, apheresis platelets (PLTs), and cold-stored low-titer group O whole blood. We used infrared detectors and inline probes to measure temperatures at the origin and at the simulated patient. We assessed warmer-induced damage by measuring plasma hemoglobin and hematocrit (seeking hemolysis), fibrinogen (seeking activation of coagulation), and PLT count and TEG-MA (seeking PLT destruction or dysfunction). RESULTS The cold-stored products were 4.2 ± 1.0°C (mean ± SD) at the origin and 21.5 ± 0.1°C at the patient. With the inline warmer, products were 37.8 ± 0.6°C at the warmer and 32.6 ± 1.7°C at the patient during a 30-minute infusion, but were 34.5 ± 2.1 with a foil sheath covering the terminal tubing. We found no warmer-induced damage using any metric. CONCLUSION In simulated neonatal intensive care unit (NICU) transfusions, an inline blood warmer can deliver blood products at near-physiologic temperatures with no detected damage. We suggest in vivo testing of warmed NICU transfusions, assessing product effectiveness and hypothermia risk reduction.
Collapse
Affiliation(s)
- Whitley Hulse
- Division of Neonatology, Department of Pediatrics, University of Utah Health, Salt Lake City, Utah, USA
| | - Timothy M Bahr
- Division of Neonatology, Department of Pediatrics, University of Utah Health, Salt Lake City, Utah, USA
| | - Lauren Fredrickson
- Primary Children's Hospital Transfusion Service, Salt Lake City, Utah, USA
| | | | - Kim Friddle
- Primary Children's Hospital NICU, Salt Lake City, Utah, USA
| | - Theodore J Pysher
- Division of Pediatric Pathology, University of Utah Health and Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Sarah J Ilstrup
- Department of Pathology, Intermountain Healthcare Transfusion Services and Intermountain Medical Center, Murray, Utah, USA
| | - Robin K Ohls
- Division of Neonatology, Department of Pediatrics, University of Utah Health, Salt Lake City, Utah, USA
| | - Robert D Christensen
- Division of Neonatology, Department of Pediatrics, University of Utah Health, Salt Lake City, Utah, USA.,Women and Newborn's Clinical Program, Intermountain Healthcare, Salt Lake City, Utah, USA.,Division of Hematology/Oncology, Department of Pediatrics, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Weatherall A, Gill M, Milligan J, Tetlow C, Harris C, Garner A, Lee A. Comparison of portable blood-warming devices under simulated pre-hospital conditions: a randomised in-vitro blood circuit study. Anaesthesia 2019; 74:1026-1032. [PMID: 31062351 DOI: 10.1111/anae.14680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2019] [Indexed: 11/27/2022]
Abstract
Pre-hospital transfusion of blood products is a vital component of many advanced pre-hospital systems. Portable fluid warmers may be utilised to help prevent hypothermia, but the limits defined by manufacturers often do not reflect their clinical use. The primary aim of this randomised in-vitro study was to assess the warming performance of four portable blood warming devices (Thermal Angel, Hypotherm X LG, °M Warmer, Buddy Lite) against control at different clinically-relevant flow rates. The secondary aim was to assess haemolysis rates between devices at different flow rates. We assessed each of the four devices and the control, at flow rates of 50 ml.min-1 , 100 ml.min-1 and 200 ml.min-1 , using a controlled perfusion circuit with multisite temperature monitoring. Free haemoglobin concentration, a marker of haemolysis, was measured at multiple points during each initial study run with spectrophotometry. At all flow rates, the four devices provided superior warming performance compared with the control (p < 0.001). Only the °M Warmer provided a substantial change in temperature at all flow rates (mean (95%CI) temperature change of 21.1 (19.8-22.4) °C, 20.4 (19.1-21.8) °C and 19.4 (17.7-21.1) °C at 50 ml.min-1 , 100 ml.min-1 and 200 ml.min-1 , respectively). There was no association between warming and haemolysis with any device (p = 0.949) or flow rate (p = 0.169). Practical issues, which may be relevant to clinical use, also emerged during testing. Our results suggest that there were significant differences in the performance of portable blood warming devices used at flow rates encountered in clinical practice.
Collapse
Affiliation(s)
- A Weatherall
- CareFlight, Sydney, NSW, Australia.,Faculty of Medicine, University of Sydney, NSW, Australia
| | - M Gill
- Department of Perfusion, Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | - C Tetlow
- CareFlight, Sydney, NSW, Australia
| | - C Harris
- Department of Haematology, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - A Garner
- CareFlight, Sydney, NSW, Australia
| | - A Lee
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
4
|
Garraud O, Sut C, Haddad A, Tariket S, Aloui C, Laradi S, Hamzeh-Cognasse H, Bourlet T, Zeni F, Aubron C, Ozier Y, Laperche S, Peyrard T, Buffet P, Guyotat D, Tavernier E, Cognasse F, Pozzetto B, Andreu G. Transfusion-associated hazards: A revisit of their presentation. Transfus Clin Biol 2018; 25:118-135. [PMID: 29625790 DOI: 10.1016/j.tracli.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a therapy or a support to other therapies, despite being largely beneficial to patients in general, transfusion it is not devoid of some risks. In a moderate number of cases, patients may manifest adverse reactions, otherwise referred to as transfusion-associated hazards (TAHs). The latest French 2016 haemovigilance report indicates that 93% of TAHs are minor (grade 1), 5.5% are moderate (grade 2) and 1.6% are severe (grade 3), with only five deaths (grade 4) being attributed to transfusion with relative certainty (imputability of level [or grade] 1 to 3). Health-care providers need to be well aware of the benefits and potential risks (to best evaluate and discuss the benefit-risk ratio), how to prevent TAHs, the overall costs and the availability of alternative therapeutic options. In high-income countries, most blood establishments (BEs) and hospital blood banks (HBBs) have developed tools for reporting and analysing at least severe transfusion reactions. With nearly two decades of haemovigilance, transfusion reaction databases should be quite informative, though there are four main caveats that prevent it from being fully efficient: (ai) reporting is mainly declarative and is thus barely exhaustive even in countries where it is mandatory by law; (aii) it is often difficult to differentiate between the different complications related to transfusion, diseases, comorbidities and other types of therapies in patients suffering from debilitating conditions; (aiii) there is a lack of consistency in the definitions used to describe and report some transfusion reactions, their severity and their likelihood of being related to transfusion; and (aiv) it is difficult to assess the imputability of a particular BC given to a patient who has previously received many BCs over a relatively short period of time. When compiling all available information published so far, it appears that TAHs can be analysed using different approaches: (bi) their pathophysiological nature; (bii) their severity; (biii) the onset scheme; (biv) a quality assessment (preventable or non-preventable); (bv) their impact on ongoing therapy. Moreover, TAHs can be reported either in a non-integrative or in an integrative way; in the latter case, presentation may also differ when issued by a blood establishment or a treating ward. At some point, a recapitulative document would be useful to gain a better understanding of TAHs in order to decrease their occurrence and severity and allow decision makers to determine action plans: this is what this review attempts to make. This review attempts to merge the different aspects, with a focus on the hospital side, i.e., how the most frequent TAHs can be avoided or mitigated.
Collapse
Affiliation(s)
- O Garraud
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Institut National de la Transfusion Sanguine, 75017 Paris, France.
| | - C Sut
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - A Haddad
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | - S Tariket
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - C Aloui
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - S Laradi
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | | | - T Bourlet
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Microbiology, University Hospital, 42023 Saint-Etienne, France
| | - F Zeni
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Critical Care, University Hospital, 29200 Saint-Etienne, France
| | - C Aubron
- Université de Bretagne Occidentale, 29200 Brest, France; Department of Critical Care, University Hospital, 75005 Brest, France
| | - Y Ozier
- Université de Bretagne Occidentale, 29200 Brest, France; Department of Critical Care, University Hospital, 75005 Brest, France
| | - S Laperche
- Institut National de la Transfusion Sanguine, 75017 Paris, France
| | - T Peyrard
- Institut National de la Transfusion Sanguine, 75017 Paris, France; Inserm S_1134, 75015 Paris, France
| | - P Buffet
- Institut National de la Transfusion Sanguine, 75017 Paris, France; Inserm S_1134, 75015 Paris, France; University Paris-Descartes, Paris, France
| | - D Guyotat
- UMR_5229, University of Lyon, 69675 Lyon, France; Institut du Cancer Lucien Neuwirth, 42023 Saint-Etienne, France
| | - E Tavernier
- UMR_5229, University of Lyon, 69675 Lyon, France; Institut du Cancer Lucien Neuwirth, 42023 Saint-Etienne, France
| | - F Cognasse
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | - B Pozzetto
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Microbiology, University Hospital, 42023 Saint-Etienne, France
| | - G Andreu
- Institut National de la Transfusion Sanguine, 75017 Paris, France
| |
Collapse
|
5
|
The prehospital management of hypothermia - An up-to-date overview. Injury 2018; 49:149-164. [PMID: 29162267 DOI: 10.1016/j.injury.2017.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Accidental hypothermia concerns a body core temperature of less than 35°C without a primary defect in the thermoregulatory system. It is a serious threat to prehospital patients and especially injured patients, since it can induce a vicious cycle of the synergistic effects of hypothermia, acidosis and coagulopathy; referred to as the trauma triad of death. To prevent or manage deterioration of a cold patient, treatment of hypothermia should ideally begin prehospital. Little effort has been made to integrate existent literature about prehospital temperature management. The aim of this study is to provide an up-to-date systematic overview of the currently available treatment modalities and their effectiveness for prehospital hypothermia management. DATA SOURCES Databases PubMed, EMbase and MEDLINE were searched using the terms: "hypothermia", "accidental hypothermia", "Emergency Medical Services" and "prehospital". Articles with publications dates up to October 2017 were included and selected by the authors based on relevance. RESULTS The literature search produced 903 articles, out of which 51 focused on passive insulation and/or active heating. The most effective insulation systems combined insulation with a vapor barrier. Active external rewarming interventions include chemical, electrical and charcoal-burning heat packs; chemical or electrical heated blankets; and forced air warming. Mildly hypothermic patients, with significant endogenous heat production from shivering, will likely be able to rewarm themselves with only insulation and a vapor barrier, although active warming will still provide comfort and an energy-saving benefit. For colder, non-shivering patients, the addition of active warming is indicated as a non-shivering patient will not rewarm spontaneously. All intravenous fluids must be reliably warmed before infusion. CONCLUSION Although it is now accepted that prehospital warming is safe and advantageous, especially for a non-shivering hypothermic patient, this review reveals that no insulation/heating combinations stand significantly above all the others. However, modern designs of hypothermia wraps have shown promise and battery-powered inline fluid warmers are practical devices to warm intravenous fluids prior to infusion. Future research in this field is necessary to assess the effectiveness expressed in patient outcomes.
Collapse
|