1
|
Liang S, Hu Z. Unveiling the predictive power of biomarkers in traumatic brain injury: A narrative review focused on clinical outcomes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024. [PMID: 39687991 DOI: 10.5507/bp.2024.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Traumatic brain injury (TBI) has long-term consequences, including neurodegenerative disease risk. Current diagnostic tools are limited in detecting subtle brain damage. This review explores emerging biomarkers for TBI, including those related to neuronal injury, inflammation, EVs, and ncRNAs, evaluating their potential to predict clinical outcomes like mortality, recovery, and cognitive impairment. It addresses challenges and opportunities for implementing biomarkers in clinical practice, aiming to improve TBI diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Sitao Liang
- Neurosurgery Department, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Zihui Hu
- Neurosurgery Department, Zhongshan City People's Hospital, Zhongshan, 528400, China
| |
Collapse
|
2
|
Zong Y, Dai Y, Yan J, Yu B, Wang D, Mao S. The roles of circular RNAs in nerve injury and repair. Front Mol Neurosci 2024; 17:1419520. [PMID: 39077756 PMCID: PMC11284605 DOI: 10.3389/fnmol.2024.1419520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Nerve injuries significantly impact the quality of life for patients, with severe cases posing life-threatening risks. A comprehensive understanding of the pathophysiological mechanisms underlying nerve injury is crucial to the development of effective strategies to promote nerve regeneration. Circular RNAs (circRNAs), a recently characterized class of RNAs distinguished by their covalently closed-loop structures, have been shown to play an important role in various biological processes. Numerous studies have highlighted the pivotal role of circRNAs in nerve regeneration, identifying them as potential therapeutic targets. This review aims to succinctly outline the latest advances in the role of circRNAs related to nerve injury repair and the underlying mechanisms, including peripheral nerve injury, traumatic brain injury, spinal cord injury, and neuropathic pain. Finally, we discuss the potential applications of circRNAs in drug development and consider the potential directions for future research in this field to provide insights into circRNAs in nerve injury repair.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
3
|
Wang Y, Liu Z, Li L, Zhang Z, Zhang K, Chu M, Liu Y, Mao X, Wu D, Xu D, Zhao J. Anti-ferroptosis exosomes engineered for targeting M2 microglia to improve neurological function in ischemic stroke. J Nanobiotechnology 2024; 22:291. [PMID: 38802919 PMCID: PMC11129432 DOI: 10.1186/s12951-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Stroke is a devastating disease affecting populations worldwide and is the primary cause of long-term disability. The inflammatory storm plays a crucial role in the progression of stroke. In the acute phase of ischemic stroke, there is a transient increase in anti-inflammatory M2 microglia followed by a rapid decline. Due to the abundant phospholipid in brain tissue, lipid peroxidation is a notable characteristic of ischemia/reperfusion (I/R), constituting a structural foundation for ferroptosis in M2 microglia. Slowing down the decrease in M2 microglia numbers and controlling the inflammatory microenvironment holds significant potential for enhancing stroke recovery. RESULTS We found that the ferroptosis inhibitor can modulate inflammatory response in MCAO mice, characterizing that the level of M2 microglia-related cytokines was increased. We then confirmed that different subtypes of microglia exhibit distinct sensitivities to I/R-induced ferroptosis. Adipose-derived stem cells derived exosome (ADSC-Exo) effectively decreased the susceptibility of M2 microglia to ferroptosis via Fxr2/Atf3/Slc7a11, suppressing the inflammatory microenvironment and promoting neuronal survival. Furthermore, through plasmid engineering, a more efficient M2 microglia-targeted exosome, termed M2pep-ADSC-Exo, was developed. In vivo and in vitro experiments demonstrated that M2pep-ADSC-Exo exhibits significant targeting specificity for M2 microglia, further inhibiting M2 microglia ferroptosis and improving neurological function in ischemic stroke mice. CONCLUSION Collectively, we illustrated a novel potential therapeutic mechanism that Fxr2 in ADSC-Exo could alleviate the M2 microglia ferroptosis via regulating Atf3/Slc7all expression, hence inhibiting the inflammatory microenvironment, improving neurofunction recovery in cerebral I/R injury. We obtained a novel exosome, M2pep-ADSC-Exo, through engineered modification, which exhibits improved targeting capabilities toward M2 microglia. This provides a new avenue for the treatment of stroke.
Collapse
Affiliation(s)
- Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhuohang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Luyu Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Zengyu Zhang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Kai Zhang
- Department of Cardiovascular Medicine, Pujiang Traditional Chinese Medicine Hospital, Zhejiang, 322200, China
| | - Min Chu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Yang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Xueyu Mao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Di Wu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Dongsheng Xu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 200120, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China.
- Institute of Healthy Yangtze River Delta, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
4
|
Ikeda T, Kawabori M, Zheng Y, Yamaguchi S, Gotoh S, Nakahara Y, Yoshie E, Fujimura M. Intranasal Administration of Mesenchymal Stem Cell-Derived Exosome Alleviates Hypoxic-Ischemic Brain Injury. Pharmaceutics 2024; 16:446. [PMID: 38675108 PMCID: PMC11053690 DOI: 10.3390/pharmaceutics16040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxic-ischemic brain injury arises from inadequate oxygen delivery to the brain, commonly occurring following cardiac arrest, which lacks effective treatments. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells. Given the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a promising approach. In this study, we investigate the effects of intranasally administered exosomes in an animal model. Exosomes were isolated from the cell supernatants using the ultracentrifugation method. Brain injury was induced in Sprague-Dawley rats through a transient four-vessel occlusion model. Intranasal administration was conducted with 3 × 108 exosome particles in 20 µL of PBS or PBS alone, administered daily for 7 days post-injury. Long-term cognitive behavioral assessments, biodistribution of exosomes, and histological evaluations of apoptosis and neuroinflammation were conducted. Exosomes were primarily detected in the olfactory bulb one hour after intranasal administration, subsequently distributing to the striatum and midbrain. Rats treated with exosomes exhibited substantial improvement in cognitive function up to 28 days after the insult, and demonstrated significantly fewer apoptotic cells along with higher neuronal cell survival in the hippocampus. Exosomes were found to be taken up by microglia, leading to a decrease in the expression of cytotoxic inflammatory markers.
Collapse
Affiliation(s)
- Takuma Ikeda
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Yuyuan Zheng
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka, Kobe 650-0047, Hyogo, Japan;
| | - Shuho Gotoh
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Yo Nakahara
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Erika Yoshie
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| |
Collapse
|
5
|
Chen Z, Zhang J, Pan Y, Hao Z, Li S. Extracellular vesicles as carriers for noncoding RNA-based regulation of macrophage/microglia polarization: an emerging candidate regulator for lung and traumatic brain injuries. Front Immunol 2024; 15:1343364. [PMID: 38558799 PMCID: PMC10978530 DOI: 10.3389/fimmu.2024.1343364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Jingang Zhang
- Department of Orthopedic, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongnan Hao
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Shuang Li
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
6
|
McGurran H, Kumbol V, Krüger C, Wallach T, Lehnardt S. miR-154-5p Is a Novel Endogenous Ligand for TLR7 Inducing Microglial Activation and Neuronal Injury. Cells 2024; 13:407. [PMID: 38474371 DOI: 10.3390/cells13050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Toll-like receptors (TLRs) are a collection of pattern recognition sensors that form a first line of defence by detecting pathogen- or damage-associated molecular patterns and initiating an inflammatory response. TLR activation in microglia, the major immune cells in the brain, can trigger the release of inflammatory molecules, which may contribute to various CNS diseases including Alzheimer's disease. Recently, some microRNAs were shown to serve as signalling molecules for TLRs. Here, we present miR-154-5p as a novel TLR7 ligand. Exposing microglia to miR-154-5p results in cytokine release and alters expression of the TLR signalling pathway dependent on TLR7. Additionally, miR-154-5p causes neuronal injury in enriched cortical neuron cultures and additive toxicity in the presence of microglia. Finally, intrathecal injection of miR-154-5p into mice leads to neuronal injury and accumulation of microglia in the cerebral cortex dependent on TLR7 expression. In conclusion, this study establishes miR-154-5p as a direct activator of TLR7 that can cause neuroinflammation and neuronal injury, which may contribute to CNS disease.
Collapse
Affiliation(s)
- Hugo McGurran
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Victor Kumbol
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
7
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|