1
|
Novel luminescent benzopyranothiophene- and BODIPY-derived aroylhydrazonic ligands and their dicopper(II) complexes: syntheses, antiproliferative activity and cellular uptake studies. J Biol Inorg Chem 2021; 26:675-688. [PMID: 34417682 DOI: 10.1007/s00775-021-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Two novel unsymmetrical binucleating aroylhydrazonic ligands and four dicopper(II) complexes carrying fluorescent benzopyranothiophene (BPT) or boron dipyrromethene (BODIPY) entities were synthesized and fully characterized. Complex 1, derived from the BPT-containing ligand H3L1, had its crystal structure elucidated through X-ray diffraction measurements. The absorption and fluorescence profiles of all the compounds obtained were discussed. Additionally, the stability of the ligands and complexes was monitored by UV-vis spectroscopy in DMSO and biologically relevant media. All the compounds showed moderate to high cytotoxicity towards the triple negative human breast cancer cell line MDA-MB-231. BPT derivatives were the most cytotoxic, specially H3L1, reaching an IC50 value up to the nanomolar range. Finally, fluorescence microscopy imaging studies employing mitochondria- and nucleus-staining dyes showed that the BODIPY-carrying ligand H3L2 was highly cell permeant and suggested that the compound preferentially accumulates in the mitochondria.
Collapse
|
2
|
Rada JP, Forté J, Gontard G, Corcé V, Salmain M, Rey NA. Isoxazole-Derived Aroylhydrazones and Their Dinuclear Copper(II) Complexes Show Antiproliferative Activity on Breast Cancer Cells with a Potentially Alternative Mechanism Of Action. Chembiochem 2020; 21:2474-2486. [PMID: 32282111 DOI: 10.1002/cbic.202000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Indexed: 12/15/2022]
Abstract
This paper reports the design, synthesis and cytotoxicity studies of two new isoxazole-derived aroylhydrazone ligands and their dinuclear copper(II) complexes. Compounds were fully characterized by various spectroscopic and analytical techniques. The molecular structures of four derivatives were confirmed by X-ray crystallography. The stability of the ligands and the complexes in aqueous medium was monitored spectroscopically. Both the ligands and the complexes were shown to interact with calf thymus DNA (ct-DNA). Additionally, structures containing a phenol pendant arm were significantly more cytotoxic than those carrying a pendant pyridine substituent, reaching sub-micromolar IC50 values on the triple-negative human breast cancer cell line MDA-MB-231. The metal chelation and transchelation ability of the compounds towards FeII , FeIII and ZnII ions was explored as a possible mechanism of action of these compounds.
Collapse
Affiliation(s)
- Jesica Paola Rada
- LABSO-Bio Laboratory, Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, 225 Rua Marquês de, São Vicente, Brazil
| | - Jéremy Forté
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Vincent Corcé
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Nicolás A Rey
- LABSO-Bio Laboratory, Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, 225 Rua Marquês de, São Vicente, Brazil
| |
Collapse
|
3
|
Maranha FG, dos Santos Silva GA, Bortoluzzi AJ, Nordlander E, Peralta RA, Neves A. A new heteropentanuclear complex containing the [Fe2IIIZn3II(μ-OH)3] structural motif as a model for purple acid phosphatases. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Rada JP, Bastos BSM, Anselmino L, Franco CHJ, Lanznaster M, Diniz R, Fernández CO, Menacho-Márquez M, Percebom AM, Rey NA. Binucleating Hydrazonic Ligands and Their μ-Hydroxodicopper(II) Complexes as Promising Structural Motifs for Enhanced Antitumor Activity. Inorg Chem 2019; 58:8800-8819. [DOI: 10.1021/acs.inorgchem.9b01195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jesica Paola Rada
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Beatriz S. M. Bastos
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Luciano Anselmino
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | - Renata Diniz
- Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Mauricio Menacho-Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Ana Maria Percebom
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Nicolás A. Rey
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| |
Collapse
|
5
|
Lutsenko IA, Kiskin MA, Efimov NN, Ugolkova EA, Maksimov YV, Imshennik VK, Goloveshkin AS, Khoroshilov AV, Lytvynenko AS, Sidorov AA, Eremenko IL. New heterometallic pivalates with Fe III and Zn II ions: Synthesis, structures, magnetic, thermal properties. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
da Silva AFM, Vital RDU, Martins DDL, da Rocha DR, Ferreira GB, Camargos Resende JAL, Lanznaster M. Investigation of cobalt(iii)–TPA complexes as potential bioreductively activated carriers for naphthoquinone-based drugs. NEW J CHEM 2017. [DOI: 10.1039/c7nj03072j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Differently from CH3, halogens as substituents foster incorporation of methoxide into NQs upon complexation.
Collapse
|
7
|
Firmo RN, de Souza ICA, Miranda FDS, Pinheiro CB, Resende JALC, Lanznaster M. A new ligand H4Lox and its iron(III) complex as a platform for the development of heterotrimetallic complexes. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Reis ACDM, Freitas MCR, Resende JA, Diniz R, Rey NA. Different coordination patterns for two related unsymmetrical compartmental ligands: crystal structures and IR analysis of [Cu(C21H21O2N3)(OH2)(ClO4)]ClO4·2H2O and [Zn2(C22H21O3N2)(C22H20O3N2)]ClO4. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.958080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Aline Cruz De Moraes Reis
- Laboratório de Síntese Orgânica e Química de Coordenação Aplicada a Sistemas Biológicos (LABSO-BIO), Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Renata Diniz
- Department of Chemistry, ICE, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nicolás A. Rey
- Laboratório de Síntese Orgânica e Química de Coordenação Aplicada a Sistemas Biológicos (LABSO-BIO), Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Bosch S, Comba P, Gahan LR, Schenk G. Dinuclear Zinc(II) Complexes with Hydrogen Bond Donors as Structural and Functional Phosphatase Models. Inorg Chem 2014; 53:9036-51. [DOI: 10.1021/ic5009945] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Simone Bosch
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120, Heidelberg, Germany
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120, Heidelberg, Germany
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Horn A, Fernandes C, Parrilha GL, Kanashiro MM, Borges FV, de Melo EJT, Schenk G, Terenzi H, Pich CT. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells. J Inorg Biochem 2013; 128:38-47. [PMID: 23933562 DOI: 10.1016/j.jinorgbio.2013.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
Abstract
The nuclease activity and the cytotoxicity toward human leukemia cancer cells of iron complexes, [Fe(HPClNOL)Cl2]NO3 (1), [Cl(HPClNOL)Fe(μ-O)Fe(HPClNOL)Cl]Cl2·2H2O (2), and [(SO4)(HPClNOL)Fe(μ-O)Fe(HPClNOL)(SO4)]·6H2O (3) (HPClNOL=1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol), were investigated. Each complex was able to promote plasmid DNA cleavage and change the supercoiled form of the plasmid to circular and linear ones. Kinetic data revealed that (1), (2) and (3) increase the rate of DNA hydrolysis about 278, 192 and 339 million-fold, respectively. The activity of the complexes was inhibited by distamycin, indicating that they interact with the minor groove of the DNA. The cytotoxic activity of the complexes toward U937, HL-60, Jukart and THP-1 leukemia cancer cells was studied employing 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), fluorescence and electronic transmission microscopies, flow cytometry and a cytochrome C release assay. Compound (2) has the highest activity toward cancer cells and is the least toxic for normal ones (i.e. peripheral blood mononuclear cells (PBMCs)). In contrast, compound (1) is the least active toward cancer cells but displays the highest toxicity toward normal cells. Transmission electronic microscopy indicates that cell death shows features typical of apoptotic cells, which was confirmed using the annexin V-FITC/PI (fluorescein isothiocyanate/propidium iodide) assay. Furthermore, our data demonstrate that at an early stage during the treatment with complex (2) mitochondria lose their transmembrane potential, resulting in cytochrome C release. A quantification of caspases 3, 9 (intrinsic apoptosis pathway) and caspase 8 (extrinsic apoptosis pathway) indicated that both the intrinsic (via mitochondria) and extrinsic (via death receptors) pathways are involved in the apoptotic stimuli.
Collapse
Affiliation(s)
- Adolfo Horn
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602 RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Torapava N, Radkevich A, Persson I, Davydov D, Eriksson L. Formation of a heteronuclear hydrolysis complex in the ThIV–FeIII system. Dalton Trans 2012; 41:4451-9. [DOI: 10.1039/c2dt30058c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Bioinspired FeIIICdII and FeIIIHgII complexes: Synthesis, characterization and promiscuous catalytic activity evaluation. J Inorg Biochem 2011; 105:1740-52. [DOI: 10.1016/j.jinorgbio.2011.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022]
|
13
|
|
14
|
Jarenmark M, Haukka M, Demeshko S, Tuczek F, Zuppiroli L, Meyer F, Nordlander E. Synthesis, Characterization, and Reactivity Studies of Heterodinuclear Complexes Modeling Active Sites in Purple Acid Phospatases. Inorg Chem 2011; 50:3866-87. [DOI: 10.1021/ic1020324] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Jarenmark
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Matti Haukka
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Serhiy Demeshko
- Institute for Inorganic Chemistry, Georg-August-University Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Felix Tuczek
- Institute for Inorganic Chemistry, Christian-Albrechts-University Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Luca Zuppiroli
- Dipartimento di Chimica “A. Mangini”, Universita di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Franc Meyer
- Institute for Inorganic Chemistry, Georg-August-University Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
15
|
Zee YLM, Gahan LR, Schenk G. A Potentially Polymerizable Heterodinuclear FeIIIZnII Purple Acid Phosphatase Mimic. Synthesis, Characterization, and Phosphate Ester Hydrolysis Studies. Aust J Chem 2011. [DOI: 10.1071/ch10424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An analogue of the purple acid phosphatase biomimetic 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol has been synthesized. The analogue, 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxy-4-(4-vinylbenzyloxy)benzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (H2BPBPMPV) possesses a pendant olefin suitable for copolymerization. Complexation with FeIII/ZnII resulted in the complex [FeIIIZnII(BPBPMPV)(CH3COO)2](ClO4), characterized with mass spectrometry, microanalysis, UV/vis, and IR spectrometry. The catalytic activity of the complex toward bis-(2,4-dinitrophenyl) phosphate was determined, resulting in Km of 4.1 ± 0.6 mM, with kcat 3.8 ± 0.2 × 10–3 s–1 and a bell-shaped pH–rate profile with pKa values of 4.31, 5.66, 8.96, the profile exhibiting residual activity above pH 9.5.
Collapse
|
16
|
Jarenmark M, Csapó E, Singh J, Wöckel S, Farkas E, Meyer F, Haukka M, Nordlander E. Unsymmetrical dizinc complexes as models for the active sites of phosphohydrolases. Dalton Trans 2010; 39:8183-94. [DOI: 10.1039/b925563j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
|
18
|
Unique tripodal chiral tertiary amine, 2,6-trans-1,2,6-trisubstituted piperidine with pyridine and bis(phenol) donor groups: Its stereoselective coordination to titanium(IV) ion. J Organomet Chem 2007. [DOI: 10.1016/j.jorganchem.2006.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Synthesis and Characterization of Modified Chitosan Through Immobilization of Complexing Agents. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/masy.200551125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Peralta RA, Neves A, Bortoluzzi AJ, Casellato A, Dos Anjos A, Greatti A, Xavier FR, Szpoganicz B. First-Transition-Metal Complexes Containing the Ligands 6-Amino-6-methylperhydro-1,4-diazepine (AAZ) and a New Functionalized Derivative: Can AAZ Act as a Mimetic Ligand for 1,4,7-Triazacyclononane? Inorg Chem 2005; 44:7690-2. [PMID: 16241112 DOI: 10.1021/ic050755c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure and physicochemistry of the [Ni(II)(AAZ)(2)](ClO(4))(2) (1) complex (AAZ = 6-amino-6-methylperhydro-1,4-diazepine), as a system that is able to mimic some important chelate properties of 1,4,7-triazacyclononane, are reported. The syntheses of a new unsymmetric AAZ-functionalized ligand and the structure of its first heterodinuclear Fe(III)Zn(II) complex are also presented.
Collapse
Affiliation(s)
- Rosely A Peralta
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | | | | | |
Collapse
|