1
|
Ramírez-Contreras D, Vázquez-Rodríguez S, García-García A, Noriega L, Mendoza A, Sánchez-Gaytán BL, Meléndez FJ, Castro ME, Cárdenas-García M, González-Vergara E. L-Citrullinato-Bipyridine and L-Citrullinato-Phenanthroline Mixed Copper Complexes: Synthesis, Characterization and Potential Anticancer Activity. Pharmaceutics 2024; 16:747. [PMID: 38931869 PMCID: PMC11207372 DOI: 10.3390/pharmaceutics16060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Citrulline (C6H13N3O3) is an amino acid found in the body as a zwitterion. This means its carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, citrulline possesses a terminal ureido group on its aliphatic chain, which also appears to coordinate. Here, two new mixed complexes of citrulline were made with 1,10-phenanthroline and 2,2'-bipyridine. These compounds, once dissolved in water, gave aquo-complexes that were subject to DFT studies and in vitro toxicity studies on cancer cell lines (HeLa, MDA-MB-231, HCT 15, and MCF7) showed promising results. Docking studies with DNA were also conducted, indicating potential anticancer properties.
Collapse
Affiliation(s)
- Diego Ramírez-Contreras
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Sergio Vázquez-Rodríguez
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Amalia García-García
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuente Nueva s/n, 18003 Granada, Spain
| | - Lisset Noriega
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida 97310, Mexico;
| | - Angel Mendoza
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Brenda L. Sánchez-Gaytán
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Francisco J. Meléndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico;
| | - María Eugenia Castro
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Maura Cárdenas-García
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Puebla 72410, Mexico
| | - Enrique González-Vergara
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| |
Collapse
|
2
|
Zhou X, Zhou Q, Chen H, Wang J, Liu Z, Zheng R. Influence of dimethylphenol isomers on electrochemical degradation: Kinetics, intermediates, and DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148284. [PMID: 34214809 DOI: 10.1016/j.scitotenv.2021.148284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Dimethylphenol isomers (DMP) pose a great threat to the environment, and the electrooxidation (EO) process proves to be an extraordinarily effective method to degrade DMP. However, the EO performance is affected by the molecular structure of DMP and the adopted experimental parameters. In this study, the effects of 2,4-DMP and 2,6-DMP on the working potential, limiting current density (Jlim), and pH were systematically analysed, with Ti-mesh plates used as the cathode and Ti/PbO2 as the anode. The peak potentials of 2,4-DMP and 2,6-DMP were determined to be 0.83 V and 0.77 V by cyclic voltammetry, with Jlim were 2.5 mA·cm-2 and 2.0 mA·cm-2, respectively. The whole process exhibited pseudo-first-order kinetics, and the kinetic constants (K) for the degradation of 2,4-DMP and 2,6-DMP were determined to be 0.0041 min-1 and 0.0150 min-1, respectively. Additionally, the optimal initial pH value for 2,4-DMP and 2,6-DMP was 5.0, where the highest hydroxyl (OH) radical density, as determined by the electron spin technique (ESR), was achieved at a higher current density. Comparatively, the OH radical density in the 2,6-DMP solution was lower than that in 2,4-DMP. In situ Fourier infrared (FT-IR) spectroscopy, GC-MS, and density functional theory (DFT) were employed to explore three possible degradation pathways. The main intermediates for 2,4-DMP degradation were determined to be quinone and ether, while that for 2,6-DMP degradation was quinone. According to the results of this study, the molecular structure (different methyl group positions on the benzene ring) has a great influence on the EO process.
Collapse
Affiliation(s)
- Xule Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qingqing Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Haihua Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Zifeng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruihao Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
3
|
The coordination chemistry of N-heterocyclic carboxylic acid: A comparison of the coordination polymers constructed by 4,5-imidazoledicarboxylic acid and 1H-1,2,3-triazole-4,5-dicarboxylic acid. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zhang H, Hu J, Zhao J, Zhang Y. Spectrometric measurements and DFT studies on new complex of copper (II) with 2-((E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 168:78-85. [PMID: 27285472 DOI: 10.1016/j.saa.2016.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
The molecular structure of a new complex of copper (II) with (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole ([Cu2(emppc)2Cl2]Cl2) was optimized with B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ theoretical level. The ligand, (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole (emppc), binds to Cu(II) ions with a bi-dentate mode, two Cl(-) serve as bridging ligand, each Cu(II) ion has a highly distorted tetrahedron coordination geometry. With M062X/LanL2DZ theoretical level, the calculated interaction energies of Cu(II) with coordination atoms N are between 183.3-200.0kJmol(-1) for α spin and 319.4-324.9kJmol(-1) for β spin, and interaction energies of Cu(II) with coordination atoms Cl atom are 248.0-252.4kJmol(-1) for α spin and 332.6-333.6kJmol(-1) for β spin. The experimental Fourier transform infrared spectrum was assigned. The calculated IR based on B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ methods were performed and compared with experimental results. The UV-Vis experimental spectra of [Cu2(emppc)2Cl2]Cl2 was measured in methanol solution. The calculated electronic spectrum was performed with TD/M062X and PCM-TD/M062X methods with LanL2DZ basis set. The nature bond orbital analysis and temperature dependence of the thermodynamic properties were calculated with the same methods.
Collapse
Affiliation(s)
- Haoyang Zhang
- Huaian Key Leaboratory for Photoelectric Conversion and Energy Storage Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, Jiangsu, PR China
| | - Jie Hu
- Huaian Key Leaboratory for Photoelectric Conversion and Energy Storage Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, Jiangsu, PR China
| | - Jianying Zhao
- Huaian Key Leaboratory for Photoelectric Conversion and Energy Storage Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, Jiangsu, PR China
| | - Yu Zhang
- Huaian Key Leaboratory for Photoelectric Conversion and Energy Storage Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, Jiangsu, PR China
| |
Collapse
|
5
|
Zou Y, Yin F, Zhou XJ, Chen J, Meng QJ. A CuII–GdIII–CuII heterometallic coordination polymer constructed by gadolinium(III) ion and copper(II) Schiff-base building block: Structure and magnetic property. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Tian D, Liu SJ, Chang Z, Zhang YH, Zhao JP, Bu XH. Edge-directed assembly of a 3D 2p–3d heterometallic metal–organic framework based on a cubic Co8(TzDC)12 cage. CrystEngComm 2013. [DOI: 10.1039/c3ce41117f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Yuan G, Shao KZ, Du DY, Wang XL, Su ZM, Ma JF. Secondary ligand-directed assembly of metal–organic coordination polymers based on a 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid ligand: Syntheses, structures and photoluminescent properties. CrystEngComm 2012. [DOI: 10.1039/c1ce06178j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Liu D, Ren ZG, Li HX, Chen Y, Wang J, Zhang Y, Lang JP. pH-dependent solvothermal formation of two different 3D multiple interpenetrating nets from the same components of Zn(NO3)2, 1,3-benzenedicarboxylate and 1,4-bis[2-(4-pyridyl)ethenyl]benzene. CrystEngComm 2010. [DOI: 10.1039/b924647a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Liu D, Li HX, Liu LL, Wang HM, Li NY, Ren ZG, Lang JP. How do substituent groups in the 5-position of 1,3-benzenedicarboxylate affect the construction of supramolecular frameworks? CrystEngComm 2010. [DOI: 10.1039/c005322h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|