1
|
Sharma V, Saini M, Das R, Chauhan S, Sharma D, Mujwar S, Gupta S, Mehta DK. Recent Updates on Antibacterial Quinolones: Green Synthesis, Mode of Interaction and Structure-Activity Relationship. Chem Biodivers 2025:e202401936. [PMID: 39756027 DOI: 10.1002/cbdv.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield. These methods are generally characterized by prolonged reaction durations, high boiling solvents, harsh conditions, costly reagents and excessive heat generation, which have adversely affected the therapeutic efficacy of these compounds. Recently, green chemistry has focused on sustainable chemistry-dependent quinolone analogue synthesis methods that significantly reduce bacterial infections. These methods include one-pot synthesis, photoredox catalysis, phase transfer catalysis, ultrasonic irradiation, microwave-assisted, green solvent and catalyst-free synthesis, which often utilize energy-efficient, non-toxic and less time-consuming techniques, aligning with green chemistry principles to improve safety and environmental impact. Researchers continuously explore innovative approaches to applying these methods in synthetic reactions. This review includes a comprehensive analysis of synthetic literature from the past 15 years from Scopus, PubMed, Embase and WOS using keywords, such as green chemistry, quinolone and antibacterial, highlighting significant advancements and emerging trends. This work's importance lies in its extensive literature overview on green synthesis methods for quinolones and related heterocyclic compounds. Furthermore, to provide useful information for the generation of future antibacterial drugs, some structural-activity relationship studies and in silico studies have also been included to investigate the stable binding interactions between quinolone leads and various target proteins.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Monika Saini
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Diksha Sharma
- Department of Pharmaceutical Chemistry, Swami Devidyal College of Pharmacy, Barwala, India
| | - Somdutt Mujwar
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
2
|
Khatri S, Khatri D, Lather V, Singh Y, Kumari P, Khatkar SP, Taxak VB, Kumar R. Exploration of Optical and Radiative Properties of Fluorinated β-keto Carboxylate Tb 3+ Complexes Emanating Cool Green Light. J Fluoresc 2023; 33:1861-1885. [PMID: 36867289 DOI: 10.1007/s10895-023-03177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
Tb3+ complexes with β-ketocarboxylic acid as main ligand and heterocyclic systems as auxiliary ligand were synthesized and analyzed to assess their prospective relevance as green light emitting material. The complexes were characterized via various spectroscopic techniques and were found to be stable up to ≈ 200 ℃. Photoluminescent (PL) investigation was performed to assess the emissive nature of complexes. Longest luminescence time of decay (1.34 ms) and highest intrinsic quantum efficiency (63.05%) were fetched for complex T5. Color purity of complexes was found to be in range 97.1 - 99.8% which demonstrated the aptness of these complexes in green color display devices. NIR Absorption spectra were employed to evaluate Judd-Ofelt parameters to appraise the luminous performance and environment encircling Tb3+ ions. The JO parameters were found to follow the order: Ω2 > Ω4 > Ω6 and suggested the higher covalence character in complexes. Theoretical branching ratio in the range 65.32 - 72.68%, large stimulated emission cross section and narrow FWHM for 5D4 → 7F5 transition unlocked the relevance of these complexes as a green color laser media. Band gap and Urbach analysis were consummated via enforcing nonlinear curve fit function on absorption data. Two band gaps with values in between 2.02 - 2.93 eV established the prospective use of complexes in photovoltaic devices. Energies of HOMO and LUMO were estimated employing geometrically optimized structures of complexes. Investigation of biological properties accomplished via antioxidant and antimicrobial assays which communicated their applicability in biomedical domain.
Collapse
Affiliation(s)
- Savita Khatri
- University Institute of Engineeering and Technology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepanita Khatri
- BPS Govt. Medical College for Women, Khanpur, Sonepat, 131305, India
| | - Vaishnavi Lather
- Shri Guru Ram Rai Institute of Medical And Health Sciences, Dehradun, Utterakhand, 248001, India
| | - Yudhvir Singh
- University Institute of Engineeering and Technology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Poonam Kumari
- University Institute of Engineeering and Technology, Maharshi Dayanand University, Rohtak, 124001, India
| | - S P Khatkar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - V B Taxak
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rajesh Kumar
- University Institute of Engineeering and Technology, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
3
|
Nasiri N, Hosseinzadeh L, Vahedpour T, Alizadeh AA, Ahmadi F. Synthesis of Mn-ofloxacin complex, experimental and in silico DNA binding evaluation, biological activity assessment. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:166-189. [PMID: 36095050 DOI: 10.1080/15257770.2022.2117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Metal-fluoroquinolones have more antibacterial and cytotoxic effects compared to free fluoroquinolones. In this work, a bidentated Mn (II) complex with ofloxacin (MOC) was synthesized and its cytotoxicity activity, oxidative stress and DNA binding were studied. Anti- proliferative and cytotoxic tests revealed that MOC exhibits better anti proliferative and cytotoxic activities compared to OFL which was attributed to the more interaction of MOC with DNA. Therefore, the interaction of MOC with DNA was investigated by using voltammetry, UV-Vis, fluorescence, and in silico methods. The results revealed that MOC interacts with DNA via electrostatic and outside hydrogen binding via minor groove. The proposed DNA binding modes may support the greater in-vitro cytotoxicity of MOC compared to OFL alone.
Collapse
Affiliation(s)
- Negar Nasiri
- Department of Medicinal Chemistry, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Hosseinzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Teymour Vahedpour
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tehran, I.R. Iran
| | - Farhad Ahmadi
- Razi Drug Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
4
|
Refat MS, Saad HA, Gobouri AA, Alsawat M, Adam AMA, Shakya S, Gaber A, Mohammed Alsuhaibani A, El-Megharbel SM. Synthesis and spectroscopic characterizations of nanostructured charge transfer complexes associated between moxifloxacin drug donor and metal chloride acceptors as a catalytic agent in a recycling of wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Sharma V, Das R, Kumar Mehta D, Gupta S, Venugopala KN, Mailavaram R, Nair AB, Shakya AK, Kishore Deb P. Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorg Med Chem 2022; 59:116674. [DOI: 10.1016/j.bmc.2022.116674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 01/09/2023]
|
6
|
Elshaier YAMM, Aly AA, El-Aziz MA, Fathy HM, Brown AB, Ramadan M. A review on the synthesis of heteroannulated quinolones and their biological activities. Mol Divers 2021; 26:2341-2370. [PMID: 34698911 DOI: 10.1007/s11030-021-10332-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
The quinoline scaffold has become an important construction motif for the development of new drugs. The quinolones and their heteroannulated derivatives have high importance due to their diverse spectrum of biological activities as antifungal, anti-inflammatory, anti-diabetes, anti-Alzheimer's disease, antioxidant and diuretic activities. This review summarizes the various new, efficient and convenient synthetic approaches to synthesize diverse quinolone-based scaffolds and their biological activities. We also dealt with the important mechanism, the route and type of reactions of the obtained products. The biological activities of some heteroannulated quinolones were also discussed.
Collapse
Affiliation(s)
- Yaseen A M M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, 32958, Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt.
| | - Mohamed Abd El-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, El-Minia, 61519, Egypt
| | - Hazem M Fathy
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, 71524, Egypt
| | - Alan B Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mohamed Ramadan
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, 71524, Egypt
| |
Collapse
|
7
|
El‐Shwiniy WH, Gamil MA, Sadeek SA, Zordok WA. Study molecular modeling and the effect of some biological metals on the efficiency of norfloxacin in presence of 3‐(bromoacetyl)coumarin. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Walaa H. El‐Shwiniy
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
- Department of Chemistry, College of Science University of Bisha Bisha Saudi Arabia
| | - Manar A. Gamil
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Sadeek A. Sadeek
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Wael A. Zordok
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| |
Collapse
|
8
|
Naglah AM, Al-Omar MA, Almehizia AA, AlKahtani HM, Bhat MA, Al-Shakliah NS, Belgacem K, Majrashi BM, Refat MS, Adam AMA. Synthesis, thermogravimetric, and spectroscopic characterizations of three palladium metal(II) ofloxacin drug and amino acids mixed ligand complexes as advanced antimicrobial materials. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Alikhani M, Hakimi M, Moeini K, Mashreghi M, Eigner V, Dusek M. Spectral, structural, biological and molecular docking studies of a new mixed-valence V(IV)/V(V) ofloxacin complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Althubeiti K. In binary solvent: Synthesis and physicochemical studies on the nano-metric palladium(II) oxide associated from complexity of palladium(II) ions with gatifloxacin drug as a bio-precursors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg Chem 2019; 92:103291. [PMID: 31561107 DOI: 10.1016/j.bioorg.2019.103291] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
In the modern scenario, the quinolone scaffold has emerged as a very potent motif considering its clinical significance. Quinolones possess wide range of pharmacological activities such as anticancer, antibacterial, antifungal, antiprotozoal, antiviral, anti-inflammatory, carbonic anhydrase inhibitory and diuretic activity etc. The versatile synthetic approaches have been successfully applied and several of the resulted synthesized compounds exhibit fascinating biological activities in numerous fields. This has prompted to discover quinolone-based analogues among the researchers due to its great diversity in biological activities. In the past few years, various new, efficient and convenient synthetic approaches (including green chemistry and microwave-assisted synthesis) have been designed and developed to synthesize diverse quinolone-based scaffolds which represent a growing area of interest in academic and industry as well as to explore their biological activities. In this review, an attempt has been made by the authors to summarize (1) One of the most comprehensive listings of quinolone-based drugs or agents in the market or under various stages of clinical development; (2) Recent advances in the synthetic strategies for quinolone derivatives as well as their biological implications including insight of mechanistic studies. (3) Further, the biological data is correlated with structure-activity relationship studies to provide an insight into the rational design of more active agents.
Collapse
|
12
|
Quinoline and quinolone dimers and their biological activities: An overview. Eur J Med Chem 2019; 161:101-117. [DOI: 10.1016/j.ejmech.2018.10.035] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/28/2023]
|
13
|
Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEDA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm (Weinheim) 2018; 351:e1800141. [DOI: 10.1002/ardp.201800141] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Hend A. A. Ezelarab
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Samar H. Abbas
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Heba A. Hassan
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | | |
Collapse
|
14
|
Jiang D. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology; Hubei University of Science and Technology; Xianning Hubei China
| |
Collapse
|
15
|
Rusu A, Hancu G, Imre S. Essential Guide of Analysis Methods Applied to Silver Complexes with Antibacterial Quinolones. Adv Pharm Bull 2018; 8:181-189. [PMID: 30023319 PMCID: PMC6046430 DOI: 10.15171/apb.2018.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
To describe the chemical structure and characterize physico-chemical properties of organometallic complexes it is necessary to use a complex set of analysis methods. Thus, this review has been compiled as a relevant guide which includes the most commonly used methods of analysis in the study of silver complexes with antibacterial quinolones, compounds with promising biological potential. This selection of analysis methods puts on balance the obtained data and the accessibility of the experimental approach. The steps to follow in order to obtain reliable structural information about organometallic complexes of silver, particularly the silver complexes of antibacterial quinolones, are established and presented in the review.
Collapse
Affiliation(s)
- Aura Rusu
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, University of Medicine and Pharmacy of TîrguMureş, Tîrgu Mureș, Romania
| | - Gabriel Hancu
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, University of Medicine and Pharmacy of TîrguMureş, Tîrgu Mureș, Romania
- Corresponding author: Gabriel Hancu, Tel: +40 265 215551 / 267 or 167, Fax: +40 265 210407,
| | - Silvia Imre
- Faculty of Pharmacy, Department of Analytical Chemistry and Drug Analysis, University of Medicine and Pharmacy of TîrguMureş, Tîrgu Mureș, Romania
| |
Collapse
|
16
|
Refat MS, El‐Sayed MY, Hassan RF. Study of the chemical structure and the microbial effect of iron(III) metal ions with four consecutive generations of quinolones in a nanometric form for the purpose of increasing the efficacy of antibacterial and antifungal drugs. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Moamen S. Refat
- Department of Chemistry, Faculty of ScienceTaif University Al‐Hawiah Taif Saudi Arabia
- Department of Chemistry, Faculty of SciencePort Said University Port Said Egypt
| | | | - Reham F. Hassan
- Department of Chemistry, Faculty of ScienceTaif University Al‐Hawiah Taif Saudi Arabia
- Chemistry Department, Faculty of ScienceHelwan University Cairo Egypt
| |
Collapse
|
17
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
18
|
Al-Saif FA, Alibrahim KA, Alfurhood JA, Refat MS. Synthesis, spectroscopic, thermal, biological, morphological and molecular docking studies of the different quinolone drugs and their cobalt(II) complexes. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
El-Megharbel SM, Hegab MS, Manaaa ESA, Al-Humaidi JY, Refat MS. Synthesis and physicochemical characterizations of coordination between palladium(ii) metal ions with floroquinolone drugs as medicinal model against cancer cells: novel metallopharmaceuticals. NEW J CHEM 2018. [DOI: 10.1039/c8nj01045e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new complexes of palladium(ii) floroquinolone drugs (levofloxacin (HLVX), pefloxacin mesylate (HPFX) and lomefloxacin (HLMX)) were prepared in alkaline media at pH = 9.
Collapse
Affiliation(s)
| | - Mohamed S. Hegab
- Deanship of Supportive studies (D.S.S.)
- Taif University
- Taif
- Saudi Arabia
| | - El-Sayed A. Manaaa
- Department of Chemistry
- Faculty of Applied Medical Science
- Taif University
- Kingdom of Saudi Arabia
- Nuclear Materials Authority
| | - Jehan Y. Al-Humaidi
- College of Science
- Princess Nourah bint Abdulrahman University
- Department of Chemistry
- Kingdom of Saudi Arabia
| | - Moamen S. Refat
- Department of Chemistry
- Faculty of Science
- Taif University
- Taif
- Saudi Arabia
| |
Collapse
|
20
|
Zhang GF, Zhang S, Pan B, Liu X, Feng LS. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem 2017; 143:710-723. [PMID: 29220792 DOI: 10.1016/j.ejmech.2017.11.082] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-positive bacteria are responsible for a broad range of infectious diseases, and the emergency and wide spread of drug-resistant Gram-positive pathogens including MRSA and MRSE has caused great concern throughout the world. 4-Quinolones which are exemplified by fluoroquinolones are mainstays of chemotherapy against various bacterial infections including Gram-positive pathogen infections, and their value and role in the treatment of bacterial infections continues to expand. However, the resistance of Gram-positive organisms to 4-quinolones develops rapidly and spreads widely, making them more and more ineffective. To overcome the resistance and reduce the toxicity, numerous of 4-quinolone derivatives were synthesized and screened for their in vitro and in vivo activities against Gram-positive pathogens, and some of them exhibited excellent potency. This review aims to outlines the recent advances made towards the discovery of 4-quinolone-based derivatives as anti-Gram-positive pathogens agents and the critical aspects of design as well as the structure-activity relationship of these derivatives. The enriched SAR paves the way to the further rational development of 4-quinolones with a unique mechanism of action different from that of the currently used drugs to overcome the resistance, well-tolerated and low toxic profiles.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Hubei, PR China
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China.
| |
Collapse
|
21
|
|
22
|
Synthesis and spectroscopic studies of levofloxacin uni-dentate complexes of Ru(II), Pt(IV) and Ir(III): Third generation of quinolone antibiotic drug complexes. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Rusu A, Hancu G, Tóth G, Vancea S, Toma F, Mare AD, Man A, Niţulescu GM, Uivarosi V. New silver complexes with levofloxacin: Synthesis, characterization and microbiological studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Komarnicka UK, Starosta R, Kyzioł A, Jeżowska-Bojczuk M. Copper(i) complexes with phosphine derived from sparfloxacin. Part I - structures, spectroscopic properties and cytotoxicity. Dalton Trans 2016; 44:12688-99. [PMID: 26085118 DOI: 10.1039/c5dt01146a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper we present new copper(i) iodide or copper(i) thiocyanate complexes with hydroxymethyldiphenylphosphine (PPh2(CH2OH)) or phosphine derivatives of sparfloxacin, a 3(rd) generation fluoroquinolone antibiotic agent (PPh2(CH2-Sf)) and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) auxiliary ligands. The synthesised complexes were fully characterised by NMR and UV-Vis spectroscopy as well as by mass spectrometry. Selected structures were additionally analysed using X-ray and DFT methods. All complexes proved to be stable in solution in the presence of water and atmospheric oxygen for several days. The cytotoxic activity of the complexes was tested against two cancer cell lines (CT26 - mouse colon carcinoma and A549 - human lung adenocarcinoma). Applying two different incubation times, the studies enabled a preliminary estimation of the dependence of the selectivity and the mechanism of action on the type of diimine and phosphine ligands. The results obtained showed that complexes with PPh2(CH2-Sf) are significantly more active than those with PPh2(CH2OH). On the other hand, the relative impact of diimine on cytotoxicity is less pronounced. However, the dmp complexes are characterised by strong inhibitory properties, while the bq ones are rather not. This confirms the interesting and promising biological properties of the investigated group of copper(i) complexes, which undoubtedly are worthy of further biological studies.
Collapse
Affiliation(s)
- Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | | | | | | |
Collapse
|
25
|
A new homoleptic coordination compound of ruthenium and norfloxacin and its interaction with human serum albumin. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2015.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
El-Megharbel SM, Adam AMA, Megahed AS, Refat MS. Synthesis and molecular structure of moxifloxacin drug with metal ions as a model drug against some kinds of bacteria and fungi. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Al-Khodir FAI, Refat MS. Vital metal complexes of levofloxacin as potential medical agents: Synthesis and their spectroscopic, thermal, computational, and anticancer studies. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215030317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Galani A, Efthimiadou EK, Mitrikas G, Sanakis Y, Psycharis V, Raptopoulou C, Kordas G, Karaliota A. Synthesis, crystal structure and characterization of three novel copper complexes of Levofloxacin. Study of their DNA binding properties and biological activities. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Liu H, Zou YL, Zhang L, Liu JX, Song CY, Chai DF, Gao GG, Qiu YF. Polyoxometalate cobalt–gatifloxacin complex with DNA binding and antibacterial activity. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.940923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hong Liu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu-Long Zou
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Lei Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jian-Xun Liu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chao-Yu Song
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | | | - Guang-Gang Gao
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Chemistry, Changchun Normal University, Changchun, China
| | - Yun-Feng Qiu
- State Key Lab of Urban Water Resource and Environment (SKLUWRE) & Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
30
|
Golcu A. Ofloxacin Metal Complexes: Synthesis, Characterization, Analytical Properties, and DNA Binding Studies. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/15533174.2013.818020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Aysegul Golcu
- Department of Chemistry, Faculty of Science and Letters, University of Kahramanmaras Sutcu Imam, Campuse of Avsar, Kahramanmaras, Turkey
| |
Collapse
|
31
|
Uivarosi V. Metal complexes of quinolone antibiotics and their applications: an update. Molecules 2013; 18:11153-97. [PMID: 24029748 PMCID: PMC6269848 DOI: 10.3390/molecules180911153] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/29/2022] Open
Abstract
Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.
Collapse
Affiliation(s)
- Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, Bucharest 020956, Romania.
| |
Collapse
|
32
|
Application of two-layer ONIOM for studying the interaction of N-substituted piperazinylfluoroquinolones with ds-DNA. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Synthesis, DNA binding and antiproliferative activity of ternary copper complexes of moxifloxacin and gatifloxacin against lung cancer cells. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|