1
|
Zhang Y, Yu WD, Li B, Chen ZF, Yan J. Discovery of a New Family of Polyoxometalate-Based Hybrids with Improved Catalytic Performances for Selective Sulfoxidation: The Synergy between Classic Heptamolybdate Anions and Complex Cations. Inorg Chem 2019; 58:14876-14884. [PMID: 31637917 DOI: 10.1021/acs.inorgchem.9b02601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of functional cation-regulated isopolymolybdate-based organic-inorganic hybrid compounds, Na2H2[Mo4O12(C8H17O5N)2]·10H2O (1), Na2[M(Bis-tris)(H2O)]2[Mo7O24]·10H2O [M = Cu, 2; Ni, 3; Co, 4; Zn, 5; Bis-tris = 2,2-Bis(hydroxymethyl)-2,2',2″-nitrilotriethanol], and (NH4)2[M(Bis-tris)(H2O)]2[Mo7O24]·6H2O (M = Zn, 6; Cu, 7), were synthesized and characterized toward advanced molecular catalyst design. Compound 1 is a covalently bonded adduct, and its self-assembly process can be probed by electrospray ionization mass spectrometry (ESI-MS). Compounds 2-7 are polyoxometalate (POM)-based hybrids containing classic heptamolybdate anions and complex cations with Bis-tris ligands. All of these compounds showed remarkable catalytic effects for selective sulfide oxidation. To the best of our knowledge, compound 5 presents the best catalytic activity so far among the reported hybrid materials with common easily synthesized small-molecule POM clusters and also exhibits outstanding reliability. The conclusion of the catalytic effect is drawn from the results that Zn-based compounds have better catalytic effects than other transition-metal-containing compounds and the compound constructed by Na+ has higher catalytic activity than that constructed by NH4+. The mechanism studies show that the improvements of the catalytic performance are caused by the synergy between classic heptamolybdate anions and complex cations. ESI-MS data and UV-vis spectra revealed that the POM anions can form intermediate peroxomolybdenum units during catalytic reaction. Further, the combination of the substrate thioanisole with complex cations was characterized by NMR experiments and UV-vis spectra. Thus, a new synergistic mechanism of anions and cations is proposed in which the activated thioanisole is used as a nucleophile to attack the peroxomolybdenum bonds, and this provides a new strategy in the design of reliable POM-based catalysts.
Collapse
|
4
|
Axelson JC, Gonzalez MI, Meihaus KR, Chang CJ, Long JR. Synthesis and Characterization of a Tetrapodal NO4(4-) Ligand and Its Transition Metal Complexes. Inorg Chem 2016; 55:7527-34. [PMID: 27404805 DOI: 10.1021/acs.inorgchem.6b00908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present the synthesis and characterization of alkali metal salts of the new tetraanionic, tetrapodal ligand 2,2'-(pyridine-2,6-diyl)bis(2-methylmalonate) (A4[PY(CO2)4], A = Li(+), Na(+), K(+), and Cs(+)), via deprotection of the neutral tetrapodal ligand tetraethyl 2,2'-(pyridine-2,6-diyl)bis(2-methylmalonate) (PY(CO2Et)4). The [PY(CO2)4](4-) ligand is composed of an axial pyridine and four equatorial carboxylate groups and must be kept at or below 0 °C to prevent decomposition. Exposing it to a number of divalent first-row transition metals cleanly forms complexes to give the series K2[(PY(CO2)4)M(H2O)] (M = Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+)). The metal complexes were comprehensively characterized via single-crystal X-ray diffraction, (1)H NMR and UV-vis absorption spectroscopy, and cyclic voltammetry. Crystal structures reveal that [PY(CO2)4](4-) coordinates in a pentadentate fashion to allow for a nearly ideal octahedral coordination geometry upon binding an exogenous water ligand. Additionally, depending on the nature of the charge-balancing countercation (Li(+), Na(+), or K(+)), the [(PY(CO2)4)M(H2O)](2-) complexes can assemble in the solid state to form one-dimensional channels filled with water molecules. Aqueous electrochemistry performed on [(PY(CO2)4)M(H2O)](2-) suggested accessible trivalent oxidation states for the Fe, Co, and Ni complexes, and the trivalent Co(3+) species [(PY(CO2)4)Co(OH)](2-) could be isolated via chemical oxidation. The successful synthesis of the [PY(CO2)4](4-) ligand and its transition metal complexes illustrates the still-untapped versatility within the tetrapodal ligand family, which may yet hold promise for the isolation of more reactive and higher-valent metal complexes.
Collapse
Affiliation(s)
- Jordan C Axelson
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Miguel I Gonzalez
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Katie R Meihaus
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Christopher J Chang
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jeffrey R Long
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|