1
|
Qian J, Li J, Jiang Y, Liu C, Zhu J, Gu L, Guo Y. Simple fluorescence "turn-off" assay for Congo red using commercial 2-aminophthalic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2760-2765. [PMID: 38638102 DOI: 10.1039/d4ay00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this work, the fluorescence properties of 2-aminophthalic acid (NH2-BDC) were studied. NH2-BDC possessed excellent optical properties including bright blue emission with maximum emission at 425 nm, a high quantum yield of 38.49% and excellent photostability. And the fluorescence of NH2-BDC could be selectively quenched by Congo red, which was ascribed to the inner filter effect. Accordingly, NH2-BDC was further employed for fluorescence "turn-off" assay of Congo red with a linear range of 0.05-50 μM and a limit of detection of 1.72 μM. And the sensor was used for the detection of Congo red in real water samples with acceptable results.
Collapse
Affiliation(s)
- Jiaqi Qian
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jie Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yihan Jiang
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chaoyong Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jiayao Zhu
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Liyu Gu
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yongming Guo
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Synthesis, Structure and Near Infrared Fluorescence Property of a New Nd-MOF Based on a Triangular Benzylamine Ligand. J Fluoresc 2023; 33:595-599. [PMID: 36456790 DOI: 10.1007/s10895-022-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022]
Abstract
A new 3D metal-organic framework (Nd-MOF) {[Nd2L2]·2NH2(CH3)2·3H2O} was successfully established via a solvothermal method with Nd3+ ion and 5-(bis(4-carboxybenzyl) amino)-isophthalicacid (H4L), and has also been characterized by X-ray diffraction, powder X-ray diffraction (PXRD), IR and photoluminescence(PL)spectrum. The neodymium ions are free of coordinated solvents, and the Nd-MOF exhibits strong near-infrared (NIR) fluorescence. Besides, Its NIR fluorescence property shows low temperature resistance, which is favorable for being used in the low temperature environment. Besides, the fluorescence lifetime of Nd-MOF is 6.03 μs, and the quantum yield is 1.2%. The small quantum yield may owe to large energy gap between the T1 of the ligand H4L and the resonance energy level 4F3/2 of the Nd3+ ion, or due to large crystal size of the Nd-MOF.
Collapse
|
3
|
Ghasempour H, Habibi B, Zarekarizi F, Morsali A, Hu ML. Converting a Non-Porous Rare-Earth Metal-Organic Framework into a Porous Yttrium-Based NH 2UiO-66 Network via a Linker Exchange Approach. Inorg Chem 2022; 61:16221-16227. [PMID: 36194391 DOI: 10.1021/acs.inorgchem.2c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvent-assisted linker exchange (SALE) method was used to produce amino-functionalized yttrium-based UiO-66 [NH2UiO-66(Y)], which is not obtainable via a direct synthetic method. Remarkably, SALE not only produced relatively highly porous NH2UiO-66(Y) from completely non-porous 3,3-bpdc-Y but also changed the network topology from 8-connected bcu in 3,3-bpdc-Y to 12-connected fcu in NH2UiO-66(Y). Based on our knowledge, this is one of the rare cases where SALE changes the whole network topology of the resulting metal-organic framework. NH2UiO-66(Y) also showed promising ability for selective detection of Cu2+ at a low concentration.
Collapse
Affiliation(s)
- Hosein Ghasempour
- Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115175, Tehran14117-13116, Iran
| | - Behnam Habibi
- Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115175, Tehran14117-13116, Iran
| | - Farnoosh Zarekarizi
- Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115175, Tehran14117-13116, Iran
| | - Ali Morsali
- Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115175, Tehran14117-13116, Iran
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou325035, China
| |
Collapse
|
4
|
Li J, Shi J, Liang A, Jiang Z. Highly catalysis amplification of MOF Nd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate. Analyst 2022; 147:2369-2377. [PMID: 35535968 DOI: 10.1039/d2an00549b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A neodymium metal-organic framework (MOFNd) was prepared using 1H-pyrazole-3,5-dicarboxylic acid (H3pdc) and 2-pyrazinecarboxylic acid as ligands. Through the addition of HAuCl4 as a precursor and NaBH4 as a reducing agent, a new MOFNd-loaded nanogold (AuNPs) (Au@MOFNd) nanosol with good stability and high catalytic activity was conveniently prepared via a solvothermal-reduction method and characterized. It was found that the indicator reaction of reducing HAuCl4 by Na2SO3 to generate AuNPs was slow. Au@MOFNd strongly catalyzes this nanoreaction, and the produced AuNPs exhibit a strong resonance Rayleigh scattering (RRS) peak at 370 nm, and a strong surface-enhanced Raman scattering (SERS) peak at 1617 cm-1 with the addition of the molecular probe Victoria blue 4R (VB4r). A novel SERS/RRS di-mode quantitative analysis method for glyphosate (GLY) was established by coupling this new Au@MOFNd catalytic indicator reaction with the aptamer (Apt) reaction of GLY, with SERS and RRS detection limits of 0.02 nM and 0.3 nM, respectively. It has been applied to the analysis of soil samples with a recovery rate of 93.0%-106.5% and precision of 2.2%-4.1%, and the results were satisfactory.
Collapse
Affiliation(s)
- Jingjing Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Jinling Shi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
5
|
Trofimova OY, Maleeva AV, Ershova IV, Cherkasov AV, Fukin GK, Aysin RR, Kovalenko KA, Piskunov AV. Heteroleptic La III Anilate/Dicarboxylate Based Neutral 3D-Coordination Polymers. Molecules 2021; 26:2486. [PMID: 33923226 PMCID: PMC8123117 DOI: 10.3390/molecules26092486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Three new 3D metal-organic frameworks of lanthanum based on mixed anionic ligands, [(La2(pQ)2(BDC)4)·4DMF]n, [(La2(pQ)2(DHBDC)4)·4DMF]n, [(La2(CA)2(BDC)4)·4DMF]n (pQ-dianion of 2,5-dihydroxy-3,6-di-tert-butyl-para-quinone, CA-dianion of chloranilic acid, BDC-1,4-benzenedicarboxylate, DHBDC-2,5-dihydroxy-1,4-benzenedicarboxylate and DMF-N,N'-dimethylformamide), were synthesized using solvothermal methodology. Coordination polymers demonstrate the rare xah or 4,6T187 topology of a 3D framework. The homoleptic 2D-coordination polymer [(La2(pQ)3)·4DMF]n was obtained as a by-product in the course of synthetic procedure optimization. The thermal stability, spectral characteristics and porosity of coordination polymers were investigated.
Collapse
Affiliation(s)
- Olesya Y. Trofimova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Arina V. Maleeva
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Irina V. Ershova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Rinat R. Aysin
- A. N. Nesmeyanov Institute of Organometallic Chemistry of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia;
| | - Konstantin A. Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave., 3, 630090 Novosibirsk, Russia;
| | - Alexandr V. Piskunov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| |
Collapse
|
6
|
Cao C, Li G, Xie Y, Hong C, Li Y. Er3+ doped core–shell nanoparticles with large enhanced near-infrared luminescence for in vivo imaging. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Yan M, Zhu P, Yang S, Kong WJ, Wang J, Zhang KL. A newly-constructed hydrolytically stable Co(ii) coordination polymer showing dual responsive fluorescence sensing of pH and Cu2+. CrystEngComm 2021. [DOI: 10.1039/d1ce00404b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel CP (1), showing distinct dual responsive fluorescence sensing of pH in three continuous stages as well as efficient and selective sensing of Cu2+.
Collapse
Affiliation(s)
- Min Yan
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Wei-Jian Kong
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jian Wang
- School of Physical Science and Technology
- Yangzhou University
- Yangzhou 225002
- China
| | - Kou-Lin Zhang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
8
|
Wu Q, Tan R, Mi X, Tu Y. Electrochemiluminescent aptamer-sensor for alpha synuclein oligomer based on a metal-organic framework. Analyst 2020; 145:2159-2167. [PMID: 32129373 DOI: 10.1039/d0an00169d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The alpha synuclein (α-syn) oligomer is one of the biomarkers used for the early diagnosis of Parkinson's disease. In this paper, two electrochemiluminescent (ECL) biosensors with an aptamer as the recognition element for α-syn oligomer detection were prepared. A functionalized indium tin oxide (ITO) glass with metal-organic framework (MOF) materials provides an adequate sensing platform. Here the gold nanoparticles/metal organic frameworks (MOFs) composite (AuNPs@MOFs) using 3-aminopropyltrimethoxysilane as a binding agent, or to connect the MOFs onto the ITO directly via glutaraldehyde, both give a strong ECL emission for luminol, even under weak alkaline conditions. Thereafter, the thiolated or carboxylated aptamer was coalesced onto the MOF material functionalized electrode using an Au-S bond or amide bond via the classic 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC-NHS) coupling, respectively. Thus, the ECL emission of the sensors significantly reduced after the specific binding of the α-syn oligomer to the aptamer. The good linear relationship of the ECL sensing signals upon the logarithm of the α-syn oligomer concentration were established, from 2.43 fM to 0.486 pM or 1.39 fM to 0.243 pM, and the limit of detection reached as low as 0.42 or 0.38 fM, for these two sensors. Both of the obtained sensors have the advantages of a high sensitivity, selectivity, and reproducibility and are capable of detecting the target in human serum.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
| | | | | | | |
Collapse
|
9
|
Saraci F, Quezada-Novoa V, Donnarumma PR, Howarth AJ. Rare-earth metal–organic frameworks: from structure to applications. Chem Soc Rev 2020; 49:7949-7977. [DOI: 10.1039/d0cs00292e] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past 30 years, rare-earth metal–organic frameworks (MOFs) have been gaining attention owing to their diverse chemical structures, and tunable properties.
Collapse
Affiliation(s)
- Felix Saraci
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
- Centre for NanoScience Research
| | - Victor Quezada-Novoa
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
- Centre for NanoScience Research
| | - P. Rafael Donnarumma
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
- Centre for NanoScience Research
| | - Ashlee J. Howarth
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
- Centre for NanoScience Research
| |
Collapse
|
10
|
Sun Y, Dong BX, Liu WL. An adjustable dual-emission fluorescent metal-organic framework: Effective detection of multiple metal ions, nitro-based molecules and DMA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117283. [PMID: 31234017 DOI: 10.1016/j.saa.2019.117283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
A novel multifunctional Pb(II)-based MOF, [Pb1.5(DBPT)]2·(DMA)3(H2O)4 (1), with excellent chemical stability, was successfully assembled by connecting {Pb2O10} unit with a multi-topic polycarboxylate ligand of 3-(3,5-dicarboxylphenyl)-5-(4-carboxylphenyl)-1-H-1,2,4-triazole (H3DBPT). It exhibits dual fluorescence emissions at 380 nm (λex = 280 nm) and 540 nm (λex = 380 nm), respectively. Through the adjustable dual fluorescence emissions, it could act as a turn-off and turn-on switch for detecting N,N-dimethylacetamide (DMA) molecule. Moreover, Fe3+ ions exert luminescence quenching role on compound 1 at both excitation lengths in water, among which the quenching at λex = 280 nm is of high sensitivity (KSV = 1.2 × 105), and the quenching at λex = 380 nm is of wide-range. The sensing for metal ions of In3+, Zr4+, and Al3+ is also effective at λex = 280 nm, with the KSV constants of 1.6 × 105, 1.6 × 105, and 4.3 × 104, respectively. More importantly, a series of nitroaromatic compounds (TNP, 2,4,6-trinitrophenol; 4-NA, 4-nitroaniline; NB, nitrobenzene) and nitro-based drugs (MNZ, metronidazole; DMZ, dimetridazole) could be detected at both excitation lengths, demonstrating the advantage of broad range response of fluorescence sensing. Thanks to the excellent chemical stability and unusual dual emission luminescence properties for chemical detection of various metal ions, nitro-based molecules and DMA solvent, the Pb-based MOF reported in this work is, therefore, a very promising multi-response sensor.
Collapse
Affiliation(s)
- Yun Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Bao-Xia Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China.
| | - Wen-Long Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China.
| |
Collapse
|
11
|
Phadungsak N, Kielar F, Dungkaew W, Sukwattanasinitt M, Zhou Y, Chainok K. A new luminescent anionic metal-organic framework based on heterometallic zinc(II)-barium(II) for selective detection of Fe 3+ and Cu 2+ ions in aqueous solution. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1372-1380. [PMID: 31589153 DOI: 10.1107/s2053229619011987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/29/2019] [Indexed: 11/11/2022]
Abstract
Over the past two decades, the development of novel inorganic-organic hybrid porous crystalline materials or metal-organic frameworks (MOFs) using crystal engineering has provoked significant interest due to their potential applications as functional materials. In this context, luminescent MOFs as fluorescence sensors have recently received significant attention for the sensing of ionic species and small molecules. In this work, a new luminescent heterometallic zinc(II)-barium(II)-based anionic metal-organic framework, namely poly[imidazolium [triaqua(μ6-benzene-1,3,5-tricarboxylato)bariumtrizinc] tetrahydrate], {(C3H4N2)[BaZn3(C9H3O6)3(H2O)3]·4H2O}n (1), was synthesized under hydrothermal conditions and characterized. Compound 1 presents a three-dimensional framework with an unprecedented (3,5)-connected topology of the point symbol (3.92).(33.42.5.93.10), and exhibits `turn-off' luminescence responses for the Cu2+ and Fe3+ ions in aqueous solution based on significantly different quenching mechanisms.
Collapse
Affiliation(s)
- Natthakorn Phadungsak
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | | | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Xi Xiang Tang, Nanning 530006, People's Republic of China
| | - Kittipong Chainok
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand
| |
Collapse
|
12
|
Majee P, Singha DK, Mondal SK, Mahata P. Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: luminescence lifetime decay experiments and DFT calculations. Photochem Photobiol Sci 2019; 18:1110-1121. [PMID: 30747203 DOI: 10.1039/c9pp00024k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have thoroughly studied the luminescence behaviour of a cadmium based MOF, [Cd(C12N2H8)(C7N1O4H3)] {C12N2H8 = 1,10-phenanthroline, C7N1O4H3 = 2,5-pyridine dicarboxylate}, 1. Both steady-state and time-resolved luminescence spectroscopic experiments were performed to understand the dissimilar responses of compound 1 towards different metal ions in aqueous medium. Upon excitation at 280 nm, compound 1 showed a luminescence spectrum centered at 365 nm, which exhibited a three-fold turn-on in the presence of a trace amount of Zn2+ in aqueous solution, whereas in the presence of Co2+, Hg2+, Ni2+, Fe2+ and Cu2+ the luminescence of compound 1 got largely quenched. Compound 1 did not show any response in the presence of other common metal ions such as K+, Mg2+, Na+, Mn2+, and Cr3+. By analysing all the experimental results, we successfully explained the versatile luminescence behaviour of compound 1. The turn-on of luminescence in the presence of Zn2+ ions was due to coordination bond formation and enhancement of the rigidity of compound 1 which resulted in the reduction of non-radiative decay processes to a large extent. The quenching of luminescence in the presence of transition metal ions was found to be static in nature, and was due to the possibility of ligand to metal charge transfer using the vacant d-orbital of the metal ions. In the case of Hg2+ which is a closed cell heavy metal ion, the quenching of luminescence was also static in nature and was due to a two-way charge transfer mechanism. We have also performed density functional theory calculations and obtained supportive results for the proposed mechanisms of luminescence turn-on and quenching. Moreover, compound 1 could be established as a selective and efficient sensor of Zn2+ in aqueous solution even in the presence of Cd2+ and other metal ions.
Collapse
Affiliation(s)
- Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | | | | | | |
Collapse
|
13
|
Chen J, Chen H, Wang T, Li J, Wang J, Lu X. Copper Ion Fluorescent Probe Based on Zr-MOFs Composite Material. Anal Chem 2019; 91:4331-4336. [DOI: 10.1021/acs.analchem.8b03924] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jing Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Haiyong Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Tiansheng Wang
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jinfang Li
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jing Wang
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xiaoquan Lu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
14
|
Zou D, Zhang J, Cui Y, Qian G. Near-infrared-emissive metal–organic frameworks. Dalton Trans 2019; 48:6669-6675. [DOI: 10.1039/c9dt01197h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe the recent progress in near-infrared-emissive metal–organic frameworks, and especially highlight their appealing applications in bio-imaging, sensing and barcoding.
Collapse
Affiliation(s)
- Danna Zou
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Material Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Jun Zhang
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Material Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Material Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Guodong Qian
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Material Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|