1
|
Skipworth T, Klaine S, Zhang R. Photochemical generation and reactivity of a new phthalocyanine-manganese-oxo intermediate. Chem Commun (Camb) 2023; 59:6540-6543. [PMID: 37161771 DOI: 10.1039/d3cc01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The first phthalocyanine-manganese-oxo intermediate was successfully generated by visible-light photolysis of chlorate or nitrite manganese(III) precursors, and its reactivity towards organic substrates was kinetically probed and compared with other related porphyrin-metal-oxo intermediates.
Collapse
Affiliation(s)
- Tristan Skipworth
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| | - Seth Klaine
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| |
Collapse
|
2
|
Skipworth T, Khashimov M, Ojo I, Zhang R. Kinetics of chromium(V)-oxo and chromium(IV)-oxo porphyrins: Reactivity and mechanism for sulfoxidation reactions. J Inorg Biochem 2022; 237:112006. [PMID: 36162208 DOI: 10.1016/j.jinorgbio.2022.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
In this work, chromium(IV)-oxo porphyrins [CrIV(Por)(O)] (2) (Por = porphyrin) were produced either by oxidation of [CrIII(Por)Cl] (1) with iodobenzene diacetate or visible light photolysis of porphyrin‑chromium(III) chlorates. Subsequent oxidation of 2 with silver perchlorate gave chromium(V)-oxo porphyrins [CrV(Por)(O)](ClO4) (3) in three porphyrin ligands, including 5,10,15,20-tetramesitylporphyrin(TMP, a), 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin(TDFPP, b), and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP, c). Complexes 2 and 3 reacted with thioanisoles to produce the corresponding sulfoxides, and their kinetics of sulfoxidation reactions with a series of aryl methyl sulfides(thioanisoles) were studied in organic solutions. Chromium(V)-oxo porphyrins are several orders of magnitudes more reactive than chromium(IV)-oxo species, and representative second-order rate constants (kox) for the oxidation of thioansole are (0.40 ± 0.01) M-1 s-1 (3a), and (2.82 ± 0.20) × 102 M-1 s-1 (3b), and (2.20 ± 0.01) × 103 M-1 s-1 (3c). The order of reactivity for 2 and 3 follows TPFPP > TDFPP > TMP, in agreement with the electrophilic nature of metal-oxo complexes. Hammett analyses indicate significant charge transfer in the transition states for oxidation of para-substituted thioanisoles by [CrV(Por)(O)]+. The ρ+ constants are -1.69 for 3a, -2.63 for 3b, and - 2.89 for 3c, respectively, mirror values found previously for related metal-oxo species. A mechanism involving the electrophilic attack of the CrV-oxo at sulfides to form a sulfur cation intermediate in the rate-determining step is suggested. Competition studies with chromium(III) porphyrin chloride and PhI(OAc)2 gave relative rate constants for oxidations of competing thioanisoles that closely match ratios of absolute rate constants from chromium(V)-oxo species, which are true oxidants under catalytic conditions.
Collapse
Affiliation(s)
- Tristan Skipworth
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Mardan Khashimov
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Iyanu Ojo
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America.
| |
Collapse
|
3
|
Bouchey CJ, Tolman WB. Involvement of a Formally Copper(III) Nitrite Complex in Proton-Coupled Electron Transfer and Nitration of Phenols. Inorg Chem 2022; 61:2662-2668. [PMID: 35078314 PMCID: PMC9835712 DOI: 10.1021/acs.inorgchem.1c03790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A unique high-valent copper nitrite species, LCuNO2, was accessed via the reversible one-electron oxidation of [M][LCuNO2] (M = NBu4+ or PPN+). The complex LCuNO2 reacts with 2,4,6-tri-tert-butylphenol via a typical proton-coupled electron transfer (PCET) to yield LCuTHF and the 2,4,6-tri-tert-butylphenoxyl radical. The reaction between LCuNO2 and 2,4-di-tert-butylphenol was more complicated. It yielded two products: the coupled bisphenol product expected from a H-atom abstraction and 2,4-di-tert-butyl-6-nitrophenol, the product of an unusual anaerobic nitration. Various mechanisms for the latter transformation were considered.
Collapse
Affiliation(s)
- Caitlin J Bouchey
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63130, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63130, United States
| |
Collapse
|
4
|
Vaillard VA, Nieres PD, Vaillard SE, Doctorovich F, Sarkar B, Neuman NI. Cobalt, Iron, and Manganese Metallocorroles in Catalytic Oxidation of Water. An Overview of the Synthesis, Selected Redox and Electronic Properties, and Catalytic Activities. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Pablo D. Nieres
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón II Buenos Aires C1428EHA Argentina
| | - Biprajit Sarkar
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Nicolás I. Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
5
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese
N
‐Haloamides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kaleb A. Reid
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Madeline H. Hicks
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Anuvab Das
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Matthew T. Figgins
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences Roosevelt University Chicago IL 60605 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
6
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese N-Haloamides*. Angew Chem Int Ed Engl 2021; 60:26647-26655. [PMID: 34662473 DOI: 10.1002/anie.202108304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Manganese complexes supported by macrocyclic tetrapyrrole ligands represent an important platform for nitrene transfer catalysis and have been applied to both C-H amination and olefin aziridination catalysis. The reactivity of the transient high-valent Mn nitrenoids that mediate these processes renders characterization of these species challenging. Here we report the synthesis and nitrene transfer photochemistry of a family of MnIII N-haloamide complexes. The S=2 N-haloamide complexes are characterized by 1 H NMR, UV-vis, IR, high-frequency and -field EPR (HFEPR) spectroscopies, and single-crystal X-ray diffraction. Photolysis of these complexes results in the formal transfer of a nitrene equivalent to both C-H bonds, such as the α-C-H bonds of tetrahydrofuran, and olefinic substrates, such as styrene, to afford aminated and aziridinated products, respectively. Low-temperature spectroscopy and analysis of kinetic isotope effects for C-H amination indicate halogen-dependent photoreactivity: Photolysis of N-chloroamides proceeds via initial cleavage of the Mn-N bond to generate MnII and amidyl radical intermediates; in contrast, photolysis of N-iodoamides proceeds via N-I cleavage to generate a MnIV nitrenoid (i.e., {MnNR}7 species). These results establish N-haloamide ligands as viable precursors in the photosynthesis of metal nitrenes and highlight the power of ligand design to provide access to reactive intermediates in group-transfer catalysis.
Collapse
Affiliation(s)
| | - Kaleb A Reid
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Madeline H Hicks
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences, Roosevelt University, Chicago, IL, 60605, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Visible light generation of high-valent metal-oxo intermediates and mechanistic insights into catalytic oxidations. J Inorg Biochem 2020; 212:111246. [PMID: 33059321 DOI: 10.1016/j.jinorgbio.2020.111246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
High-valent metal-oxo complexes play central roles as active oxygen atom transfer (OAT) agents in many enzymatic and synthetic oxidation catalysis. This review focuses on our recent advances in application of photochemical approaches to probe the oxidizing metal-oxo species with different metals and macrocyclic ligands. Under visible light irradiation, a variety of important metal-oxo species including iron-oxo porphyrins, manganese-oxo porphyrin/corroles, ruthenium-oxo porphyrins, and chromium-oxo salens have been successfully generated. Kinetical studies in real time have provided mechanistic insights as to the reactivity and reaction pathways of the metal-oxo intermediates in their oxidation reactions. In photo-induced ligand cleavage reactions, metals in n+ oxidation state with the oxygen-containing ligands bromate, chlorate, or nitrites were photolyzed. Homolytic cleavage of the O-X bond in the ligand gives (n + 1)+ oxidation state metal-oxo species, and heterolytic cleavage gives (n + 2)+ oxidation state metal-oxo species. In photo-disproportionation reactions, reactive Mn+1-oxo species can be formed by photolysis of μ-oxo dimeric Mn+ complexes with the concomitant formation of Mn-1 products. Importantly, the oxidation of Mn-1 products by molecular oxygen (O2) to regenerate the μ-oxo dimeric Mn+ complexes in photo-disproportionation reactions represents an attractive and green catalytic cycle for the development of photocatalytic aerobic oxidations.
Collapse
|
8
|
Klaine S, Fung Lee N, Dames A, Zhang R. Visible light generation of chromium(V)-oxo salen complexes and mechanistic insights into catalytic sulfide oxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Klaine S, Bratcher F, Winchester CM, Zhang R. Formation and kinetic studies of manganese(IV)-oxo porphyrins: Oxygen atom transfer mechanism of sulfide oxidations. J Inorg Biochem 2019; 204:110986. [PMID: 31924588 DOI: 10.1016/j.jinorgbio.2019.110986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/26/2022]
Abstract
Visible light irradiation of photo-labile porphyrin-manganese(III) chlorates or bromates (2) produced manganese(IV)-oxo porphyrins [MnIV(Por)(O)] (Por = porphyrin) (3) in three porphyrin ligands. The same oxo species 3 were also formed by chemical oxidation of the corresponding manganese(III) precursors (1) with iodobenzene diacetate, i.e. PhI(OAc)2. The systems under study include 5,10,15,20-tetra(pentafluorophenyl)porphyrin‑manganese(IV)-oxo (3a), 5,10,15,20-tetra(2,6-difluorophenyl)porphyrin‑manganese(IV)-oxo (3b), and 5,10,15,20-tetramesitylporphyrin‑manganese(IV)-oxo (3c). As expected, complexes 3 reacted with thioanisoles to produce the corresponding sulfoxides and over-oxidized sulfones. The kinetics of oxygen atom transfer (OAT) reactions of these generated 3 with aryl sulfides were studied in CH3CN solutions. Second-order rate constants for sulfide oxidation reactions are comparable to those of alkene epoxidations and activated CH bond oxidations by the same oxo species 3. For a given substrate, the reactivity order for the manganese(IV)-oxo species was 3a > 3b > 3c, consistent with expectations on the basis of the electron-withdrawing capacity of the porphyrin macrocycles. Free-energy Hammett analyses gave near-linear correlations with σ values, indicating no significant positive charge developed at the sulfur during the oxidation process. The mechanistic results strongly suggest [MnIV(Por)(O)] reacts as a direct OAT agent towards sulfide substrates through a manganese(II) intermediate that was detected in this work. However, an alternative pathway that involves a disproportionation of 3 to form a higher oxidized manganese(V)-oxo species may be significant when less reactive substrates are present. The competition product studies with the Hammett correlation plot confirmed that the observed manganese(IV)-oxo species is not the true oxidant for the sulfide oxidations catalyzed by manganese(III) porphyrins with PhI(OAc)2.
Collapse
Affiliation(s)
- Seth Klaine
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Fox Bratcher
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Charles M Winchester
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America.
| |
Collapse
|
10
|
Mondal S, Naik PK, Adha JK, Kar S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
|
12
|
Lu G, Bao L, Hu X, Liu X, Zhu W. Synthesis, spectroscopic characterization and photocatalytic properties of corrole modified GPTMS/TiO2 nanoparticles. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Kwong KW, Patel D, Malone J, Lee NF, Kash B, Zhang R. An investigation of ligand effects on the visible light-induced formation of porphyrin–iron(iv)-oxo intermediates. NEW J CHEM 2017. [DOI: 10.1039/c7nj03296j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depending on the structure of the porphyrin ligands, the visible light photolysis of porphyrin–iron(iii) bromates produced iron(iv)-oxo radical cations or iron(iv)-oxo porphyrins, permitting direct kinetic studies of their oxidation reactions.
Collapse
Affiliation(s)
- Ka Wai Kwong
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Dharmesh Patel
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Jonathan Malone
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Ngo Fung Lee
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Benjamin Kash
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Rui Zhang
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| |
Collapse
|