1
|
Silva-Gaspar B, Martinez-Franco R, Pirngruber G, Fécant A, Diaz U, Corma A. Open-Framework Chalcogenide Materials - from isolated clusters to highly ordered structures - and their photocalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Liang Z, Dong X. Co2P nanosheet cocatalyst-modified Cd0.5Zn0.5S nanoparticles as 2D-0D heterojunction photocatalysts toward high photocatalytic activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Wang Y, Zhu Z, Sun Z, Hu Q, Li J, Jiang J, Huang X. Discrete Supertetrahedral T5 Selenide Clusters and Their Se/S Solid Solutions: Ionic-Liquid-Assisted Precursor Route Syntheses and Photocatalytic Properties. Chemistry 2020; 26:1624-1632. [PMID: 31971636 DOI: 10.1002/chem.201904256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Indexed: 11/07/2022]
Abstract
Although supertetrahedral Tn sulfide clusters (n=2-6) have been extensively explored, the synthesis of Tn selenide clusters with n>4 has not been achieved thus far. Reported here are ionic-liquid (IL)-assisted precursor route syntheses, characterizations, and the photocatalytic properties of six new M-In-Q (M=Cu or Cd; Q=Se or Se/S) chalcogenide compounds, namely [Bmmim]12 Cu5 In30 Q52 Cl3 (Im) (Q=Se (T5-1), Se48.5 S3.5 (T5-2); Bmmim=1-butyl-2,3-dimethylimidazolium, Im=imidazole), [Bmmim]11 Cd6 In28 Q52 Cl3 (MIm) (Q=Se (T5-3), Se28.5 S23.5 (T5-4), Se16 S36 (T5-5); MIm=1-methylimidazole), and [Bmmim]9 Cd6 In28 Se8 S44 Cl(MIm)3 (T5-6). The cluster compounds T5-1 and T5-3 represent the largest molecular supertetrahedral Tn selenide clusters to date. Under visible-light illumination, the Cu-In-Q compounds showed photocatalytic activity towards the decomposition of crystal violet, whereas the Cd-In-Q compounds exhibited good photocatalytic H2 evolution activity. Interestingly, the experimental results show that the photocatalytic performances of the selenide/sulfide solid solutions were significantly better than those of their selenide analogues, for example, the degradation time of the organic dye with T5-2 was much shorter than that with T5-1, whereas the photocatalytic H2 evolution efficiencies with T5-3-T5-6 improved significantly with increasing sulfur content. This work highlights the significance of IL-assisted precursor route synthesis and the tuning of photocatalytic properties through the formation of solid solutions.
Collapse
Affiliation(s)
- Yanqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350002, China
| | - Zhipeng Zhu
- Applied Chemistry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaofeng Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qianqian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jianrong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jiang Jiang
- Applied Chemistry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|