1
|
Vieira D, Koushanpour A, Tilliet C, Zhang Z, Harvey E, Merle G. Towards a fully biodegradable oxygen reducing electrocatalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
2
|
Xiong J, Chen X, Zhang Y, Lu Y, Liu X, Zheng Y, Zhang Y, Lin J. Fe/Co/N-C/graphene derived from Fe/ZIF-67/graphene oxide three dimensional frameworks as a remarkably efficient and stable catalyst for the oxygen reduction reaction. RSC Adv 2022; 12:2425-2435. [PMID: 35425220 PMCID: PMC8979202 DOI: 10.1039/d1ra08817c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
The development of non-noble metal catalysts with high-performance, long stability and low-cost is of great importance for fuel cells, to promote the oxygen reduction reaction (ORR). Herein, Fe/Co/N-C/graphene composites were easily prepared by using Fe/ZIF-67 loaded on graphene oxide (GO). The Fe/Co/porous carbon nanoparticles were uniformly dispersed on graphene with high specific surface area and large porosity, which endow high nitrogen doping and many more active sites with better ORR performance than the commercial 20 wt% Pt/C. Therefore, Fe/Co/N-C/graphene composites exhibited excellent ORR activity in alkaline media, with higher initial potential (0.91 V) and four electron process. They also showed remarkable long-term catalytic stability with 96.5% current retention after 12 000 s, and outstanding methanol resistance, compared with that of 20 wt% Pt/C catalysts. This work provides an effective strategy for the preparation of non-noble metal-based catalysts, which could have significant potential applications, such as in lithium-air batteries and water-splitting devices.
Collapse
Affiliation(s)
- Junchao Xiong
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
- School of New Energy, North China Electric Power University Beijing 102206 China
| | - Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Yupan Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Yue Lu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Yafei Zheng
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Yongming Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing 102206 China
| | - Jun Lin
- School of New Energy, North China Electric Power University Beijing 102206 China
| |
Collapse
|
3
|
Zhang G, Zhou J, Liu J, Ma T, Chen Y, Xu C. Hollow and mesoporous lipstick-like nitrogen-doped carbon with incremented catalytic activity for oxygen reduction reaction. NANOTECHNOLOGY 2021; 32:095401. [PMID: 33137799 DOI: 10.1088/1361-6528/abc6df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hollow structure and pore size are considered to be crucial to the performance of nitrogen-doped carbon materials. In this paper, a lipstick-like hollow and mesoporous nitrogen-doped carbon (HNC-1000) material is prepared using a bottom-up template participation strategy. The images by scanning electron microscopy and transmission electron microscopy show that the precursor ZnO particles, the intermediate ZnO@ZIF-8 core-shell particles, and the target HNC-1000 particles all maintain a lipstick-like morphology, and HNC-1000 is a hollow nitrogen-doped carbon material. The specific surface area and pore size analyses show that the synthesized HNC-1000 has a very rich mesoporous structure with Vmeso+macro/Vtotal of 94.8% and mean mesopore size at 13.67 nm. X-ray photoelectron spectroscopy results show that the nitrogen in the catalyst HNC-1000 is mainly pyridine nitrogen and graphite nitrogen. The prepared HNC-1000 has excellent ORR catalytic activity with onset potential (0.98 V versus RHE), half-wave potential (0.85 V versus RHE), and limiting current density (5.51 mA cm-2), which is comparable to that of commercial Pt/C (20 wt%) and superior to NC-1000 derived from pristine ZIF-8. HNC-1000 also has good stability and strong methanol tolerance, which is superior to commercial Pt/C catalyst. The improved performance of HNC-1000 is attributed to its hollow and mesoporous morphology. These findings demonstrate a stratage for the rational design and synthesis of practical electrocatalysts.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| | - Jia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| | - Jiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| | - Tian Ma
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| | - Yu Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Chunli Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| |
Collapse
|
4
|
Song X, Jiang Y, Cheng F, Earnshaw J, Na J, Li X, Yamauchi Y. Hollow Carbon-Based Nanoarchitectures Based on ZIF: Inward/Outward Contraction Mechanism and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004142. [PMID: 33326182 DOI: 10.1002/smll.202004142] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/15/2020] [Indexed: 05/04/2023]
Abstract
Hollow carbon-based nanoarchitectures (HCAs) derived from zeolitic imidazolate frameworks (ZIFs), by virtue of their controllable morphology and dimension, high specific surface area and nitrogen content, richness of metal/metal compounds active sites, and hierarchical pore structure and easy exposure of active sites, have attracted great interests in many fields of applications, especially in heterogeneous catalysis, and electrochemical energy storage and conversion. Despite various approaches that have been developed to prepare ZIF-derived HCAs, the hollowing mechanism has not been clearly disclosed. Herein, a specialized overview of the recent progress of ZIF-derived HCAs is introduced to provide an insight into their preparation strategy and the corresponding hollowing mechanisms. Based on the fundamental understanding of the structural evolution of ZIF nanocrystals during the high-temperature pyrolysis process, the hollowing mechanisms of ZIF-derived HCAs are classified into four categories: i) inward contraction of core-shell template@ZIF composites or hollow ZIFs, ii) outward contraction of ZIF@shell composites, iii) special outward contraction of ZIF arrays, and iv) mechanism beyond inward/outward contraction of pure ZIF nanocrystals. Finally, an outlook on the development prospects and challenges of HCAs based on ZIF precursors, especially in terms of controlled synthesis and future electrochemical application, is further discussed.
Collapse
Affiliation(s)
- Xiaokai Song
- School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yu Jiang
- School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Fang Cheng
- School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jacob Earnshaw
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, No. 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
5
|
Fu X, Zhu J, Ao B, Lyu X, Chen J. Enhanced oxygen evolution reaction activity of FeNi3N nanostructures via incorporation of FeNi3. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|