1
|
Patra R, Mondal S, Sarma D. Thiol and thioether-based metal-organic frameworks: synthesis, structure, and multifaceted applications. Dalton Trans 2023; 52:17623-17655. [PMID: 37961841 DOI: 10.1039/d3dt02884d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metal-organic frameworks (MOFs) are unique hybrid porous materials formed by combining metal ions or clusters with organic ligands. Thiol and thioether-based MOFs belong to a specific category of MOFs where one or many thiols or thioether groups are present in organic linkers. Depending on the linkers, thiol-thioether MOFs can be divided into three categories: (i) MOFs where both thiol or thioether groups are part of the carboxylic acid ligands, (ii) MOFs where only thiol or thioether groups are present in the organic linker, and (iii) MOFs where both thiol or thioether groups are part of azolate-containing linkers. MOFs containing thiol-thioether-based acid ligands are synthesized through two primary approaches; one is by utilizing thiol and thioether-based carboxylic acid ligands where the bonding pattern of ligands with metal ions plays a vital role in MOF formation (HSAB principle). MOFs synthesized by this approach can be structurally differentiated into two categories: structures without common structural motifs and structures with common structural motifs (related to UiO-66, UiO-67, UiO-68, MIL-53, NU-1100, etc.). The second approach to synthesize thiol and thioether-based MOFs is indirect methods, where thiol or thioether functionality is introduced in MOFs by techniques like post-synthetic modifications (PSM), post-synthetic exchange (PSE) and by forming composite materials. Generally, MOFs containing only thiol-thioether-based ligands are synthesized by interfacial assisted synthesis, forming two-dimensional sheet frameworks, and show significantly high conductivity. A limited study has been done on MOFs containing thiol-thioether-based azolate ligands where both nitrogen- and sulfur-containing functionality are present in the MOF frameworks. These materials exhibit intriguing properties stemming from the interplay between metal centres, organic ligands, and sulfur functionality. As a result, they offer great potential for multifaceted applications, ranging from catalysis, sensing, and conductivity, to adsorption. This perspective is organised through an introduction, schematic representations, and tabular data of the reported thiol and thioether MOFs and concluded with future directions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sumit Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| |
Collapse
|
2
|
Zhang X, Liu Z, Shao B, Wu T, Pan Y, Luo S, He M, Ge L, Sun J, Cheng C, Huang J. Construction of ZnIn 2S 4/MOF-525 heterojunction system to enhance photocatalytic degradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67647-67661. [PMID: 37118391 DOI: 10.1007/s11356-023-27282-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
Zirconium-based porphyrin metal organic frameworks (Zr-PMOFs) had attracted attention in the field of photocatalysis in recent years. However, the recombination of photogenerated carriers of monomer PMOF limits its performance of photocatalytic organic pollutants degradation. Metal sulfide has a suitable visible band gap, which can form a heterojunction with MOF materials to enhance the photocatalytic efficiency of MOF. Therefore, a typical metal sulfide semiconductor ZnIn2S4 (ZIS) was introduced into a Zr-MOF (MOF-525) by solvothermal method to prepare a series of ZIS/MOF-525 (ZIS/MOF-525-1, ZIS/MOF-525-2, ZIS/MOF-525-3 and ZIS/MOF-525-4) composite photocatalysts in this work. The results of characterization analysis, optical analysis and electrochemical analysis showed that the interface of ZIS/MOF-525 formed a typical type-II heterojunction, which accelerated the electron transport rate and effectively inhibited the recombination of photogenerated e- and h+ in MOF-525. The optimal removal efficiency of tetracycline (TC) by ZIS/MOF-525-3 (the mass of MOF-525 is 30 mg) reached 93.8% under 60 min visible light illumination, which was greater than that of pure MOF-525 (37.2%) and ZnIn2S4 (70.0%), and it still maintained good stability after five cycles reusing experiment. This work provides feasible insight for the preparation of novel and efficient PMOF-based photocatalysts in the future.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jingwen Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Chunyun Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jian Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| |
Collapse
|
3
|
Mao S, Shi JW, Sun G, Zhang Y, Ma D, Song K, Lv Y, Zhou J, Wang H, Cheng Y. PdS Quantum Dots as a Hole Attractor Encapsulated into the MOF@Cd 0.5Zn 0.5S Heterostructure for Boosting Photocatalytic Hydrogen Evolution under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48770-48779. [PMID: 36259606 DOI: 10.1021/acsami.2c15052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, a new photocatalyst PdS@UiOS@CZS is successfully synthesized, where thiol-functionalized UiO-66 (UiOS), a metal-organic framework (MOF) material, is used as a host to encapsulate PdS quantum dots (QDs) in its cages, and Cd0.5Zn0.5S (CZS) solid solution nanoparticles (NPs) are anchored on its outer surface. The resultant PdS@UiOS@CZS with an optimal ratio between components displays an excellent photocatalytic H2 evolution rate of 46.1 mmol h-1 g-1 under visible light irradiation (420∼780 nm), which is 512.0, 9.2, and 5.9 times that of pure UiOS, CZS, and UiOS@CZS, respectively. The reason for the significantly enhanced performance is that the encapsulated PdS QDs strongly attract the photogenerated holes into the pores of UiOS, while the photogenerated electrons are effectively migrated to CZS due to the heterojunction effect, thereby effectively suppressing the recombination of charge carriers for further high-efficiency hydrogen production. This work provides an idea for developing efficient photocatalysts induced by hole attraction.
Collapse
Affiliation(s)
- Siman Mao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guotai Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yijun Zhang
- Key Laboratory of Electronic Ceramics and Devices of Ministry of Education, Department of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yixuan Lv
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongkang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Zhang S, Ou X, Xiang Q, Carabineiro SAC, Fan J, Lv K. Research progress in metal sulfides for photocatalysis: From activity to stability. CHEMOSPHERE 2022; 303:135085. [PMID: 35618060 DOI: 10.1016/j.chemosphere.2022.135085] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Metal sulfides are a type of reduction semiconductor photocatalysts with narrow bandgap and negative conduction band potential, which make them have unique photocatalytic performance in solar-to-fuel conversion and environmental purification. However, metal sulfides also suffer from low quantum efficiency and photocorrosion. In this review, the strategies to improve the photocatalytic activity of metal sulfide photocatalysts by stimulating the charge separation and improving light-harvesting ability are introduced, including morphology control, semiconductor coupling and surface modification. In addition, the recent research progress aiming at improving their photostability is also illustrated, such as, construction of hole transfer heterojunctions and deposition of hole transfer cocatalysts. Based on the electronic band structures, the applications of metal sulfides in photocatalysis, namely, hydrogen production, degradation of organic pollutants and reduction of CO2, are summarized. Finally, the perspectives of the promising future of metal-sulfide based photocatalysts and the challenges remaining to overcome are also presented.
Collapse
Affiliation(s)
- Sushu Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Xiaoyu Ou
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Qian Xiang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Kangle Lv
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China.
| |
Collapse
|
5
|
Li X, Li Q, Zhang T, Lou Y, Chen J. Ni 2P NPs loaded on methylthio-functionalized UiO-66 for boosting visible-light-driven photocatalytic H 2 production. Dalton Trans 2022; 51:12282-12289. [PMID: 35899810 DOI: 10.1039/d2dt01205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UiO-66 family shows promising photocatalytic prospects in water splitting for hydrogen evolution under visible light irradiation due to its suitable band gap and adequate active sites. In this work, novel Ni2P/UiO-66-(SCH3)2 composites were prepared by a simple solvothermal method. These as-synthesized samples were fully characterized by XRD, SEM, TEM, HRTEM, EDS, and XPS methods. The effectiveness of visible light driven photocatalytic water-splitting to produce hydrogen was investigated in the presence of sacrificial agents. The results showed that the optimal hydrogen yield of 5 wt% Ni2P/UiO-66-(SCH3)2 is 3724.22 μmol g-1 h-1, reaching almost 187 times that of pristine UiO-66-(SCH3)2 (19.93 μmol g-1 h-1). Meanwhile, long term cycling stability tests also showed that Ni2P/UiO-66-(SCH3)2 composites present an excellent photocatalytic H2 production stability. Photoelectrochemical performance analysis revealed that the high catalytic activity of the composite materials could be associated with the synergistic effect of UiO-66-(SCH3)2 and Ni2P. Light stimulates UiO-66-(SCH3)2 to generate electrons and holes, and Ni2P as a cocatalyst could effectively transmit electrons and boost photogenerated charge separation. This work provides a reference for exploring UiO-66 family catalysts with good catalytic activity.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Qiulin Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Tiantian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
6
|
Recent advances of Zr based metal organic frameworks photocatalysis: Energy production and environmental remediation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214177] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Yang R, Mei L, Fan Y, Zhang Q, Zhu R, Amal R, Yin Z, Zeng Z. ZnIn 2 S 4 -Based Photocatalysts for Energy and Environmental Applications. SMALL METHODS 2021; 5:e2100887. [PMID: 34927932 DOI: 10.1002/smtd.202100887] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 06/14/2023]
Abstract
As a fascinating visible-light-responsive photocatalyst, zinc indium sulfide (ZnIn2 S4 ) has attracted extensive interdisciplinary interest and is expected to become a new research hotspot in the near future, due to its nontoxicity, suitable band gap, high physicochemical stability and durability, ease of synthesis, and appealing catalytic activity. This review provides an overview on the recent advances in ZnIn2 S4 -based photocatalysts. First, the crystal structures and band structures of ZnIn2 S4 are briefly introduced. Then, various modulation strategies of ZnIn2 S4 are outlined for better photocatalytic performance, which includes morphology and structure engineering, vacancy engineering, doping engineering, hydrogenation engineering, and the construction of ZnIn2 S4 -based composites. Thereafter, the potential applications in the energy and environmental area of ZnIn2 S4 -based photocatalysts are summarized. Finally, some personal perspectives about the promises and prospects of this emerging material are provided.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Liang Mei
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Yingying Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Qingyong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Rongshu Zhu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
8
|
Ikreedeegh RR, Tahir M. A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101381] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J Colloid Interface Sci 2021; 581:1-10. [DOI: 10.1016/j.jcis.2020.07.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
|
10
|
Gao YH, Ji XH, Zhang D, Liu ZF, Lu JF. Microwave-assisted fabrication of CQDs/ZnIn2S4 nanocomposites for synergistic photocatalytic removal of Cr(VI) and rhodamine B. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yan-Hong Gao
- Shaanxi Province Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Xiao-Hui Ji
- Shaanxi Province Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Dan Zhang
- Shaanxi Province Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Zhi-Feng Liu
- Shaanxi Province Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Jiu-Fu Lu
- Shaanxi Province Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, P.R. China
| |
Collapse
|
11
|
Xu Y, E Y, Wang G. Controlled growth of “cookie-like” ZnIn2S4 nanoparticles on g-C3N4 for enhanced visible light photocatalytic activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Chen J, Chao F, Ma X, Zhu Q, Jiang J, Ren J, Guo Y, Lou Y. Synthesis of flower-like CuS/UiO-66 composites with enhanced visible-light photocatalytic performance. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|