1
|
Zhang Y, Jin S, Liu R, Liu Z, Gong L, Zhang L, Zhao T, Yin W, Chen S, Fa H, Niu L. A portable magnetic electrochemical sensor for highly efficient Pb(II) detection based on bimetal composites from Fe-on-Co-MOF. ENVIRONMENTAL RESEARCH 2024; 250:118499. [PMID: 38368921 DOI: 10.1016/j.envres.2024.118499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The practical, sensitive, and real-time detection of heavy metal ions is an essential and difficult problem. This study presents the design of a unique magnetic electrochemical detection system that can achieve real-time field detection. To enhance the electrochemical performance of the sensor, Fe2O3@C-800, Co/CoO@/C-600, and CoFe2O4@C-600 magnetic composites were synthesized using three MOFs precursors by the solvothermal method. And the morphology structure and electrochemical properties of as-prepared magnetic composites were researched by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), specific surface area and porosity analyzer (BET) and differential pulse voltammetry (DPV). The results shown that these composites improve conductivity and stability while preserving the MOFs basic frame structure. Compared with the monometallic MOFs-derived composites, the synergistic effect of the bimetallic composite CoFe2O4@C-600 can significantly enhance the electrochemical performance of the sensor. The linear range for the detection of lead ions was 0.001-60 μM, and the detection limit was 0.0043 μM with a sensitivity of 22.22 μA μM·cm-2 by differential pulse voltammetry. The sensor has good selectivity, stability, reproducibility and can be used for actual sample testing.
Collapse
Affiliation(s)
- Yijiao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Siwei Jin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Renlong Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China
| | - Zuohua Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China
| | - Li Gong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Tengda Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Wei Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China; Analytical and Testing Center of Chongqing University, Chongqing, 400044, China
| | - Shiqi Chen
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, China; Chongqing Institute for Food and Drug Control, China
| | - Huanbao Fa
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China.
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, China; Chongqing Institute for Food and Drug Control, China.
| |
Collapse
|
2
|
Guo Y, Yan G, Sun X, Wang S, Chen L, Feng Y. "d-electron interactions" induced CoV 2O 6-Fe-NF for efficient oxygen evolution reaction. RSC Adv 2023; 13:18488-18495. [PMID: 37346941 PMCID: PMC10280129 DOI: 10.1039/d3ra02830e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
The investigation of cost-effective, highly efficient, and environmentally friendly non-noble-metal-based electrocatalysts is imperative for oxygen evolution reactions (OER). Herein, CoV2O6 grown on nickel foam (NF) was selected as the fundamental material, and Fe2+ is introduced through a simple Fe3+ immersion treatment to synthesize CoV2O6-Fe-NF. Fe2+ is transformed into high oxidation state Fe(2+δ)+ due to interactions between the 3d electrons of transition metals. In situ Raman spectroscopy analysis reveals the specific process of OER in the presence of Fe(2+δ)+. Being in a higher oxidation state, Fe(2+δ)+ provides more active sites, which is beneficial for the reaction between water molecules and the reactive sites of the electrocatalyst, ultimately enhancing the accelerated OER process. CoV2O6-Fe-NF exhibited an overpotential of only 298 mV at 100 mA cm-2 in 1 M KOH electrolyte, which is lower than that of CoV2O6-NF (348 mV), as well as the comparative samples: Fe-NF (390 mV) and NF (570 mV). The exploration of high performance, triggered synergistically by the cooperative effect of transition metal 3d electrons, provides insights into the design of transition metal electrocatalysts for highly efficient OER.
Collapse
Affiliation(s)
- Yuchao Guo
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Xi Sun
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Shuo Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Li Chen
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| |
Collapse
|
3
|
Zhu W, Zhu G, Hu J, Zhu Y, Chen H, Yao C, Pi Z, Zhu S, Li E. Poorly crystallized nickel hydroxide carbonate loading with Fe3+ ions as improved electrocatalysts for oxygen evolution. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Li Y, Wang C, Cui M, Chen S, Ma T. A novel strategy to synthesize CoMoO4 nanotube as highly efficient oxygen evolution reaction electrocatalyst. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|