Seung No H, Sim M, Shin IS, Kim J, Hong JI. Photoluminescent and Electrochemiluminescent Detection of Fe
3+ Using Cyclometalated Iridium Complexes via Fe
3+-Catalyzed Hydrolysis.
Chem Asian J 2024:e202400805. [PMID:
39385591 DOI:
10.1002/asia.202400805]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ferric ion (Fe3+) is a biologically abundant and important metal ion. We developed several cyclometalated iridium complex-based molecular sensors (1, ppy-1, 1-phen, 1 a, and 1_OMe) for the detection of Fe3+ using an acetal moiety as the reaction site. The acetal moiety in iridium complexes undergoes Fe3+-catalyzed hydrolysis and subsequent formation of a formyl group, resulting in turn-off photoluminescent and electrochemiluminescent responses. Sensor 1 showed excellent selectivity toward Fe3+ over other biologically important metal ions. Furthermore, we compared the performance of the sensors based on the structural differences of the iridium complexes, and revealed a relationship between the structure and chemical properties through electrochemical experiments and computational calculations.
Collapse