1
|
Pal A, Karmakar M, Bhatta SR, Thakur A. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
2
|
Parchegani F, Amani S, Zendehdel M. Eco-friendly chitosan Schiff base as an efficient sensor for trace anion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119714. [PMID: 33774417 DOI: 10.1016/j.saa.2021.119714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Herein, a chitosan Schiff base sample (CSAN) was strategically designed and prepared via a two-step process. In the first step, an azo derivative of 1- naphthylamine namely, [2-hydroxy-5-(naphthalene-1-yldiazenyl) benzaldehyde] (HNDB) was synthesized as an aldehyde moiety. Then the condensation reaction of HNDB with chitosan afforded CSAN as the target product. Structural analyses of synthesized material were accomplished through FT-IR, 1H NMR, UV-Vis, XRD, TGA, and SEM spectral methods. Meanwhile, the heterogeneous CSAN was able to detect the presence of hydrogen carbonate (HCO3-), acetate (AcO-), and cyanide (CN-) anions in semi-aqueous media (H2O/DMSO; 10:90%, v/v). Moreover, the selectivity of CSAN towards CN- anion was increased through variation in solvent mixture ratios. Thereupon, CSAN was explored as a promising sensor towards CN- anion in an aqueous media through considerable color variation from colorless to pale yellow as well as quantitative chemical analysis. Overall, reliable CSAN chemosensor with high sensitivity for mentioned anions has a pivotal role in practical applications owing to it's reversibility ability.
Collapse
Affiliation(s)
- Fatemeh Parchegani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Saeid Amani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Mojgan Zendehdel
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran.
| |
Collapse
|
3
|
Song Q, Zhou B, Zhang D, Chi H, Jia H, Zhu P, Zhang Z, Meng Q, Zhang R. A reversible near-infrared fluorescence probe for the monitoring of HSO 3−/H 2O 2-regulated cycles in vivo. NEW J CHEM 2021. [DOI: 10.1039/d1nj03507j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A near-infrared (NIR) fluorescent probe (XC) was constructed for the reversible detection of HSO3−/H2O2 in biosystems. The practical applications of XC were also demonstrated by the quantitative analysis of HSO3− in white wine and sugar samples.
Collapse
Affiliation(s)
- Qiuying Song
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Bo Zhou
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Dongyu Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Haijun Chi
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Hongmin Jia
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Peixun Zhu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Qingtao Meng
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|