1
|
Le Garrec S, Martins-Bessa D, Wolff M, Delavaux-Nicot B, Mallet-Ladeira S, Serpentini CL, Benoist E, Bedos-Belval F, Fery-Forgues S. Dinuclear tricarbonylrhenium(I) complexes: impact of regioisomerism on the photoluminescence properties. Dalton Trans 2024; 53:16512-16529. [PMID: 39258561 DOI: 10.1039/d4dt01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dinuclear Re(I) complexes have proportionally been much less studied than mononuclear analogues. In particular, very little information is available about their solid-state emission properties. In this work, two structural isomers of dinuclear complexes (Bi-Re-metaPhe and Bi-Re-paraPhe), which differ by the relative position of the coordination spheres on a central phenyl ring, were synthesized and compared with each other and with the parent mononuclear compound (Mono-Re-Phe), from a theoretical and experimental point of view. In solution, the electronic, electrochemical and spectroscopic properties of the dinuclear complexes were almost identical, and rather close to those of the monomer. In the solid state, the photoluminescence (PL) efficiency of dimers was not higher than that of the monomer, but a clear mechanoresponsive luminescence (MRL) effect appeared only for the former ones. The positional isomerism influenced the amplitude of this effect, as well as the aggregation-induced emission (AIE) properties in a water-acetonitrile mixture. This study reveals the importance of positional isomerism to modulate the emission properties in the solid state. It also shows the advantage of dinuclear structures to access new MRL-active materials.
Collapse
Affiliation(s)
- Stéphen Le Garrec
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - David Martins-Bessa
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Mariusz Wolff
- Institut für Funktionelle Materialien und Katalyse, Universität Wien, Währinger Straße 38-42, 1090 Wien, Austria
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, 40-006 Katowice, Poland
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination, CNRS (UPR 8241), Université de Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Sonia Mallet-Ladeira
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT-UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Charles-Louis Serpentini
- Laboratoire SOFTMAT, CNRS UMR 5623, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
2
|
Kumar S, Selvachandran M, Wu C, Pascal RA, Zhang X, Grusenmeyer T, Schmehl RH, Sproules S, Mague JT, Donahue JP. Heterotrimetallic Assemblies with 1,2,4,5-Tetrakis(diphenylphosphino)benzene Bridges: Constructs for Controlling the Separation and Spatial Orientation of Redox-Active Metallodithiolene Groups. Inorg Chem 2022; 61:17804-17818. [DOI: 10.1021/acs.inorgchem.2c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Satyendra Kumar
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Malathy Selvachandran
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Che Wu
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Robert A. Pascal
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Xiaodong Zhang
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Tod Grusenmeyer
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Russell H. Schmehl
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Joel T. Mague
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - James P. Donahue
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| |
Collapse
|
3
|
Investigating the mechanism of fluorescence probe of quinoline derivatives for detecting phosgene in gas and liquid phases. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Zhan H, Zhang H, Wang Y, Tao Y, Tian J, Fei X. Exploring the relationship between the "ON-OFF" mechanism of fluorescent probes and intramolecular charge transfer properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120339. [PMID: 34537632 DOI: 10.1016/j.saa.2021.120339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
In this study, the excited state charge distribution characteristics and fluorescence mechanism of HClO detection probes HN-ClO (weak fluorescence) and HN-ClO-F (strong fluorescence) probes were investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT). The results of electrostatic potential (ESP) map and hole-electron analysis show that the HN-ClO and HN-ClO-F probes have obvious charge separation characteristics in the excited state. The excited state energy decomposition and Merz-Kollman charge analysis demonstrate the existence of distinct planar intramolecular charge transfer (PICT) features in HN-ClO and HN-ClO-F. Due to the strong charge coupling caused by the planar structure, the fluorescence of HN-ClO-F could occur. Furthermore, the weak fluorescence of HN-ClO is caused by inter-system crossing (ISC) between S1 and T1 state. Our result proves that the ICT process could exist in HN-ClO-F, but the PICT process does not cause fluorescence quenching, which have provided an excellent supplement to the mechanism of fluorescent probes. The conclusion is consistent with the fluorescence phenomenon observed in the experiment.
Collapse
Affiliation(s)
- Hongbin Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hengwei Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yaping Tao
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, PR China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xu Fei
- Lab Analyst of Network Information Center, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
5
|
Dinuclear ReI complex based on 1,2,4,5-tetrakis(diphenylphosphino)- pyridine: synthesis and luminescence properties. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Poirot A, Vanucci-Bacqué C, Delavaux-Nicot B, Leygue N, Saffon-Merceron N, Alary F, Bedos-Belval F, Benoist E, Fery-Forgues S. Phenyl-pyta-tricarbonylrhenium(I) complexes: combining a simplified structure and steric hindrance to modulate the photoluminescence properties. Dalton Trans 2021; 50:13686-13698. [PMID: 34523629 DOI: 10.1039/d1dt02161c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strongly luminescent tricarbonylrhenium(I) complexes are promising candidates in the field of optical materials. In this study, three new complexes bearing a 3-(2-pyridyl)-1,2,4-triazole (pyta) bidentate ligand with an appended phenyl group were obtained in very good yields owing to an optimized synthetic procedure. The first member of this series, i.e. complex 1, was compared with the previously studied complex RePBO to understand the influence of the fluorescent benzoxazole unit grafted on the phenyl ring. Then, to gauge the effect of steric hindrance on the luminescence properties, the phenyl group of complex 1 was substituted in the para position by a bulky tert-butyl group or an adamantyl moiety, affording complexes 2 and 3, respectively. The results of theoretical calculations indicated that these complexes were quite similar from an electronic point of view, as evidenced by the electrochemical study. In dichloromethane solution, under excitation in the UV range, all the complexes emitted weak phosphorescence in the red region. In the solid state, they could be excited in the blue region of the visible spectrum and they emitted strong yellow light. The photoluminescence quantum yield was markedly increased with raising the size of the substituent, passing from 0.42 for 1 to 0.59 for 3. The latter complex also exhibited clear waveguiding properties, unprecedented for rhenium complexes. From this point of view, these easy-synthesized and spectroscopically attractive complexes constitute a new generation of emitters for use in imaging applications and functional materials. However, the comparison with RePBO showed that the presence of the benzoxazole group leads to unsurpassed mechanoresponsive luminescence (MRL) properties, due to the involvement of a unique photophysical mechanism that takes place only in this type of complex.
Collapse
Affiliation(s)
- Alexandre Poirot
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Corinne Vanucci-Bacqué
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination, CNRS (UPR 8241), Université de Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Nadine Leygue
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT- UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques (LCPQ), CNRS UMR 5626, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
7
|
Synthesis, coordination and extraction properties of 2,3-bis(diphenylphosphoryl)pyridine toward f-block elements. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Synthesis, coordination and extraction properties of 2,3-bis(diphenylphosphoryl)pyridine toward f-block elements. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhan H, Wang Y, Li Z, Tang Z, Tian J, Fei X. Investigating the Influence of Electronic Effects of Functional Groups on the Fluorescence Mechanism of Probes in Water Samples. J Phys Chem A 2021; 125:2866-2875. [PMID: 33823591 DOI: 10.1021/acs.jpca.1c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study investigates the fluorescence quenching mechanism of formaldehyde detection probe Naph1 and its contrast probe Naph3 in water samples and discussed the effect of the electron-donating group and electron-withdrawing group on fluorescence characteristics based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT). We optimized the structures of the four probes Naph1, Naph1-S, Naph3, and Naph3-S (Scheme 1) and calculated the absorption and emission spectra, which were in good agreement with the experiment. Frontier molecular orbitals (FMOs) were used to analyze the charge arrangement in the excited state. To investigate the intramolecular proton transfer (ESIPT) phenomenon, a potential energy curve was constructed. The amount of fragment charge transfer was analyzed by the IFCT method, and then it was determined whether there was an intramolecular charge transfer (ICT) process. It was found that there was an ICT process in Naph3. The electronic effect of the functional groups did not determine the ICT characteristics and the fluorescence characteristics of the substance. Furthermore, the spin-orbit coupling (SOC) constant based on the intersystem crossing (ISC) was supplemented, which showed that the fluorescence quenching of Naph1 and Naph3 was caused by the ISC and the corresponding quenching of Naph3-S was caused by charge transfer (CT) in the excited state.
Collapse
Affiliation(s)
- Hongbin Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Zixian Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xu Fei
- Lab Analyst of Network Information Center, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|