1
|
Shaik A, Kondaparthy V, Begum A, Husain A, Chinnagalla T. Novel vanadyl complexes synthesis, characterization and interactions with bovine serum albumin-effects on STZ- diabetes rats. Biometals 2024; 37:357-369. [PMID: 37945804 DOI: 10.1007/s10534-023-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Drug-protein interactions are essential since most administered drugs bind abundantly and reversibly to serum albumin and are delivered mainly as a complex with protein. The nature and strength of drug-protein interactions have a big impact on how a drug works biologically. The binding parameters are useful in studying the pharmacological response of drugs and the designing of dosage forms. Serum albumin is regarded as optimal model for in vitro research on drug-protein interaction since it is the main protein that binds medicines and other physiological components. In this perspective, binary complex have been synthesized and characterized, from vanadium metal and acetylacetone(4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione). Imidazole, 2-Methyl-imidazole, and 2-Ethyl-imidazole auxiliary ligands were employed for the synthesis of ternary complexes. Additionally, UV absorption and fluorescence emission spectroscopy were used to examine the binding interactions between vanadium complexes and Bovine Serum Albumin. The outcomes of the binding studies and spectral approaches were in strong agreement with one another. These complexes upon inoculation into diabetes-induced Wistar rats stabilized their serum glucose levels within 3 days. From various studies, it was discovered that the ordering of glucose-lowering actions of these metal complexes were equivalent. The vanadium ternary metal complex derived from (4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione) and imidazole as ligands is the best among the other metal vanadium complexes.
Collapse
Affiliation(s)
- Ayub Shaik
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India.
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India.
| | - Vani Kondaparthy
- Department of Chemistry, Tara Government College (A), Sangareddy, Telangana, India
| | - Alia Begum
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Ameena Husain
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Tejasree Chinnagalla
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| |
Collapse
|
2
|
Shaik A, Kondaparthy V, Begum A, Husain A, Manwal DD. Enzyme PTP-1B Inhibition Studies by Vanadium Metal Complexes: a Kinetic Approach. Biol Trace Elem Res 2023; 201:5037-5052. [PMID: 36652102 DOI: 10.1007/s12011-023-03557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The medical field now needs more novel drugs to treat obesity and type-2 diabetes mellitus (T2D) than ever before. Obesity and T2D are both characterized by resistance to the hormones leptin and insulin. PTP-1B is a promising target for drug growth, as strong genetic, pharmacological, and biochemical evidence points to the possibility of treating diabetes and obesity by blocking the PTP-1B enzyme. Studies have also found that PTP-1B is overexpressed in patients with diabetes and obesity, suggesting that inhibiting PTP-1B may be a useful technique in their care. There are no clinically used PTP-1B inhibitors, despite the fact that numerous naturally occurring PTP-1B inhibitors have demonstrated great therapeutic promise. This is most likely due to their low activity or lack of selectivity. It is still important to look for more effective and focused PTP-1B inhibitors. A few organovanadium metal complexes were synthesized and characterized, and binding studies on vanadium complexes with PTP-B were also performed using fluorescence emission spectroscopy. Additionally, we theoretically (molecular modeling) and experimentally (enzyme kinetics) examined the PTP-1B inhibitory effects of these vanadium metal complexes and found that they have excellent PTP-1B inhibitory properties.
Collapse
Affiliation(s)
- Ayub Shaik
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India.
| | - Vani Kondaparthy
- Department of Chemistry, Tara Government College (A), Sangareddy, Telangana, India
| | - Alia Begum
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Ameena Husain
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Deva Das Manwal
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| |
Collapse
|
3
|
Kostrzewa T, Nowak I, Feliczak-Guzik A, Drzeżdżon J, Jacewicz D, Górska-Ponikowska M, Kuban-Jankowska A. Encapsulated Oxovanadium(IV) and Dioxovanadium(V) Complexes into Solid Lipid Nanoparticles Increase Cytotoxicity Against MDA-MB-231 Cell Line. Int J Nanomedicine 2023; 18:2507-2523. [PMID: 37197025 PMCID: PMC10184862 DOI: 10.2147/ijn.s403689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Solid lipid nanoparticles (SLN) have been considered lately as promising drug delivery system in treatment of many human diseases including cancers. We previously studied potential drug compounds that were effective inhibitors of PTP1B phosphatase - possible target for breast cancer treatment. Based on our studies, two complexes were selected for encapsulation into the SLNs, the compound 1 ([VO(dipic)(dmbipy)] · 2 H2O) and compound 2 ([VOO(dipic)](2-phepyH) · H2O). Here, we investigate the effect of encapsulation of those compounds on cell cytotoxicity against MDA-MB-231 breast cancer cell line. The study also included the stability evaluation of the obtained nanocarriers with incorporated active substances and characterization of their lipid matrix. Moreover, the cell cytotoxicity studies against the MDA-MB-231 breast cancer cell line in comparison and in combination with vincristine have been performed. Wound healing assay was carried out to observe cell migration rate. Methods The properties of the SLNs such as particle size, zeta potential (ZP), and polydispersity index (PDI) were investigated. The morphology of SLNs was observed by scanning electron microscopy (SEM), while the crystallinity of the lipid particles was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The cell cytotoxicity of complexes and their encapsulated forms was carried out against MDA-MB-231 breast cancer cell line using standard MTT protocols. The wound healing assay was performed using live imaging microscopy. Results SLNs with a mean size of 160 ± 25 nm, a ZP of -34.00 ± 0.5, and a polydispersity index of 30 ± 5% were obtained. Encapsulated forms of compounds showed significantly higher cytotoxicity also in co-incubation with vincristine. Moreover, our research shows that the best compound was complex 2 encapsulated into lipid nanoparticles. Conclusion We observed that encapsulation of studied complexes into SLNs increases their cell cytotoxicity against MDA-MB-231 cell line and enhanced the effect of vincristine.
Collapse
Affiliation(s)
- Tomasz Kostrzewa
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
- Correspondence: Tomasz Kostrzewa; Alicja Kuban-Jankowska, Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland, Tel +48 58 349 14 50, Fax +48 58 349 14 56, Email ;
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Magdalena Górska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
- IEMEST Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, 90127, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, 70174, Germany
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| |
Collapse
|
4
|
Synthesis, characterization, biomolecular interaction and in vitro glucose metabolism studies of dioxidovanadium(V) benzimidazole compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
New mixed ligand oxidovanadium(IV) complexes: Solution behavior, protein interaction and cytotoxicity. J Inorg Biochem 2022; 233:111853. [DOI: 10.1016/j.jinorgbio.2022.111853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
|
6
|
Shaik A, Kondaparthy V, Aveli R, Vemulapalli L, Manwal DD. Vanadium metal complexes’ inhibition studies on enzyme PTP‐1B and anti‐diabetic activity studies on Wistar rats. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ayub Shaik
- Department of Chemistry Osmania University Hyderabad Telangana India
| | - Vani Kondaparthy
- Department of Chemistry Osmania University Hyderabad Telangana India
| | - Rambabu Aveli
- Department of Science & Humanities St. Martin’s Engineering College, Dhulapally Hyderabad Telangana India
| | | | - Deva Das Manwal
- Department of Chemistry Osmania University Hyderabad Telangana India
| |
Collapse
|