1
|
Pepe Y, Akkoyun S, Asci N, Cevik E, Tutel Y, Karatay A, Unalan HE, Elmali A. Investigation of the Defect and Intensity-Dependent Optical Limiting Performance of MnO 2 Nanoparticle-Filled Polyvinylpyrrolidone Composite Nanofibers. ACS OMEGA 2023; 8:47954-47963. [PMID: 38144086 PMCID: PMC10734008 DOI: 10.1021/acsomega.3c06572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
To enhance the optical limiting behavior triggered by nonlinear absorption (NA), wide-band gap MnO2 nanoparticles were incorporated into polyvinylpyrrolidone (PVP) polymer nanofibers at various concentrations. SEM images of the composite nanofibers showed that MnO2 nanoparticles are well entrapped in the nanofibers. With an increase in MnO2 nanofiller concentration, a widened optical band gap energy and an increased Urbach energy were observed. As the concentration of MnO2 nanofiller in PVP increased, the NA behavior became more pronounced but weakened with higher input intensity. This behavior was attributed to the filling of the localized defect states by one photon absorption (OPA). The NA mechanisms of the composite nanofibers were examined, considering their band gap energies and localized defect states. Although all of the composite nanofibers had OPA, sequential/simultaneous two photon absorption (TPA), and excited state absorption mechanisms, the higher concentration of the MnO2 nanofiller led to stronger NA behavior due to its more defective structure. The highest optical limiting behavior was observed for composite nanofibers with the highest concentration of MnO2 nanofiller. The results obtained show that these composite nanofibers with a high linear transmittance and an extended band gap energy can be used in optoelectronic applications that can operate in a wide spectral range. Furthermore, their robust NA behavior, coupled with their promising optical limiting characteristics, positions them as strong contenders for effective optical limiting applications.
Collapse
Affiliation(s)
- Yasemin Pepe
- Department
of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Ankara, Türkiye
| | - Serife Akkoyun
- Department
of Metallurgical and Materials Engineering, Faculty of Engineering
and Natural Sciences, Ankara Yildirim Beyazit
University, 06010 Ankara, Türkiye
- Central
Research Laboratory, Application and Research Center, Ankara Yildirim Beyazit University, 06010 Ankara, Türkiye
| | - Nurcan Asci
- Department
of Metallurgical and Materials Engineering, Faculty of Engineering
and Natural Sciences, Ankara Yildirim Beyazit
University, 06010 Ankara, Türkiye
| | - Eda Cevik
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Türkiye
| | - Yusuf Tutel
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Türkiye
| | - Ahmet Karatay
- Department
of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Ankara, Türkiye
| | - Husnu Emrah Unalan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Türkiye
- Energy
Storage Materials and Devices Research Center (ENDAM), Middle East Technical University (METU), 06800 Ankara, Türkiye
| | - Ayhan Elmali
- Department
of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Ankara, Türkiye
| |
Collapse
|
2
|
Benedet M, Gallo A, Maccato C, Rizzi GA, Barreca D, Lebedev OI, Modin E, McGlynn R, Mariotti D, Gasparotto A. Controllable Anchoring of Graphitic Carbon Nitride on MnO 2 Nanoarchitectures for Oxygen Evolution Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47368-47380. [PMID: 37769189 PMCID: PMC10571007 DOI: 10.1021/acsami.3c09363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
The design and fabrication of eco-friendly and cost-effective (photo)electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic carbon nitride (g-CN) OER (photo)electrocatalysts by means of a novel preparation strategy. The proposed route consists of the plasma enhanced-chemical vapor deposition (PE-CVD) of MnO2 nanoarchitectures on porous Ni scaffolds, the anchoring of controllable g-CN amounts by an amenable electrophoretic deposition (EPD) process, and the ultimate thermal treatment in air. The inherent method versatility and flexibility afforded defective MnO2/g-CN nanoarchitectures, featuring a g-CN content and nano-organization tunable as a function of EPD duration and the used carbon nitride precursor. Such a modulation had a direct influence on OER functional performances, which, for the best composite system, corresponded to an overpotential of 430 mV at 10 mA/cm2, a Tafel slope of ≈70 mV/dec, and a turnover frequency of 6.52 × 10-3 s-1, accompanied by a very good time stability. The present outcomes, comparing favorably with previous results on analogous systems, were rationalized on the basis of the formation of type-II MnO2/g-CN heterojunctions, and yield valuable insights into this class of green (photo)electrocatalysts for end uses in solar-to-fuel conversion and water treatment.
Collapse
Affiliation(s)
- Mattia Benedet
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Andrea Gallo
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
| | - Chiara Maccato
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Gian Andrea Rizzi
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Davide Barreca
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Oleg I. Lebedev
- Laboratoire
CRISMAT, UMR 6508 CNRS/ENSICAEN/UCBN, 14050 Caen Cedex 4, France
| | - Evgeny Modin
- CIC
nanoGUNE BRTA, Donostia, 20018 San Sebastian, Spain
| | - Ruairi McGlynn
- School
of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, Northern Ireland
| | - Davide Mariotti
- School
of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, Northern Ireland
| | - Alberto Gasparotto
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| |
Collapse
|
3
|
Raj SNM, Jothi VK, Rajaram A, Suresh P, Murugan K, Natarajan A. Rational design of α-MnO 2/HT-GCN nanocomposite for effective photocatalytic degradation of ciprofloxacin and pernicious activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90689-90707. [PMID: 37464206 DOI: 10.1007/s11356-023-28636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
The present study is mainly concerned with the development of cost-efficient composite material utilized to produce one-dimensional manganese oxide (α-MnO2) nanoparticles coated on two-dimensional graphitic carbon nitrides (HT-GCN) as nanocomposite (α-MnO2/HT-GCN) for highly efficient CIP degradation. The α-MnO2 nanoparticles (NPs) were prepared by a simple hydrothermal technique before being decorated on HT-GCN (H denotes protonation and T represents thermal-decomposition-graphitic carbon nitride). Tauc plots were used to calculate the band gap values of the photocatalysts α-MnO2 (1.74 eV), GCN (2.84 eV), HT-GCN (2.63 eV), and α-MnO2/HT-GCN (2.31 eV). The mechanism was investigated by various scavengers, particularly isopropanol (•OH) makes a significant role in the photodegradation process. The degradation percentage for ciprofloxacin was 89.2% and the rate of reaction R2 = 0.9913. This study demonstrates a unique method for developing a heterojunction-based nanocomposite of α-MnO2/HT-GCN, which exhibit better light absorption performance.
Collapse
Affiliation(s)
- Sherlin Nivetha Michael Raj
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Tamil Nadu, Kattankulathur, 603203, India
| | - Vinoth Kumar Jothi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Tamil Nadu, Kattankulathur, 603203, India
| | - Arulmozhi Rajaram
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Tamil Nadu, Kattankulathur, 603203, India
| | - Pavithra Suresh
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Tamil Nadu, Kattankulathur, 603203, India
| | - Komal Murugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Tamil Nadu, Kattankulathur, 603203, India
| | - Abirami Natarajan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Tamil Nadu, Kattankulathur, 603203, India.
| |
Collapse
|
4
|
Fan K, Chen Q, Zhao J, Liu Y. Preparation of MnO 2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:541. [PMID: 36770501 PMCID: PMC9921467 DOI: 10.3390/nano13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is one of the most important problems in the field of environmental protection in the whole world, and organic pollution is a critical one for wastewater pollution problems. How to solve the problem effectively has triggered a common concern in the area of environmental protection nowadays. Around this problem, scientists have carried out a lot of research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost, photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity at low temperatures. With the development of carbon materials, it was found that the composite of carbon materials and MnO2 could overcome the above defects, and the composite had good photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon materials has gradually become a research hotspot in recent years. This review covers recent progress on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods of MnO2 and different kinds of carbon material composites and the application of composite materials in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water. Finally, we present our perspective on the challenges and future research directions of MnO2-carbon materials in the field of environmental applications.
Collapse
Affiliation(s)
- Kun Fan
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qing Chen
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Ecological and Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Jian Zhao
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yue Liu
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Almojil SF, Almohana AI, Alali AF, Attia EA, Sharma K, Shamseldin MA, Mohammed AG, Cao Y. Oxygen vacancy and p–n heterojunction in a g-C 3N 4 nanosheet/CuFeO 2 nanocomposite for enhanced photocatalytic N 2 fixation to NH 3 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02850f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this article, the nitrogen fixation process over g-C3N4 nanosheets/CuFeO2 p–n heterojunction photocatalyst is presented.
Collapse
Affiliation(s)
- Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - El-Awady Attia
- Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 16273, Saudi Arabia
- Mechanical Engineering Department, faculty of engineering (Shoubra), Benha University, Cairo, Egypt
| | - Kamal Sharma
- Institute of Engineering and Technology, GLA University, Mathura, U.P., 281406, India
| | - Mohamed A. Shamseldin
- Department of Mechanical Engineering, Faculty of Engineering & Technology, Future University in Egypt, 11845 New Cairo, Egypt
| | - Azheen Ghafour Mohammed
- Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq
| | - Yan Cao
- School of Mechatronic Engineering, Xi’an Technological University, Xi’an, 710021, China
| |
Collapse
|