1
|
Han Y, Tao J, Khan A, Khan A, Ali N, Malik S, Yu C, Yang Y, Jesionowski T, Bilal M. Development of reusable chitosan-supported nickel sulfide microspheres for environmentally friendlier and efficient bio-sorptive decontamination of mercury toxicant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47077-47089. [PMID: 36735126 DOI: 10.1007/s11356-022-24563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Mercury emissions from the industrial sector have become an undeniable concern for researchers due to their toxic health effects. Efforts have been made to develop green, efficient, and reliable methods for removal of mercury from wastewater. Sorption process promises fruitful results for the decontamination of cations from wastewater. Among the number of used sorbents, metal sulfides have been emerged as an appropriate material for removing toxic metals that possess good affinity due to sulfur-based active sites for Hg through "Lewis's acid-based soft-soft interactions." Herein, nickel-sulfide nanoparticles were synthesized, followed by their incorporation in chitosan microspheres. FTIR analysis confirmed the synthesis of nickel sulfide-chitosan microspheres (NiS-CMs) displaying sharp bands for multiple functional groups. XRD analysis showed that the NiS-CMs possessed a crystallite size of 42.1 nm. SEM analysis indicated the size of NiS-CMs to be 950.71 μm based on SEM micrographs. The sorption of mercury was performed using the NiS-CMs, and the results were satisfactory, with a sorption capacity of 61 mg/g at the optimized conditions of pH 5.0, 80 ppm concentration, in 60 min at 25 °C. Isothermal models and kinetics studies revealed that the process followed pseudo-second-order kinetics and the Langmuir isothermal model best fitted to experimental data. It was concluded that the NiS-CMs have emerged as the best choice for removing toxic mercury ions with a positive impact on the environment.
Collapse
Affiliation(s)
- Yonghong Han
- Department of Pharmacy and Traditional Chinese Pharmacy, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, People's Republic of China.
| | - Juan Tao
- Department of Pharmacy and Traditional Chinese Pharmacy, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, People's Republic of China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar-Khyber Pakhtunkhwa, 25120, Pakistan
| | - Afrasiab Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar-Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Peshawar-Khyber Pakhtunkhwa, 25120, Pakistan
| | - Chunhao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Department of Pharmaceutical Engineering, Faculty of Chemical Engineering, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yong Yang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Department of Pharmaceutical Engineering, Faculty of Chemical Engineering, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland
| |
Collapse
|
2
|
Valério Filho A, Santana LR, Motta NG, Passos LF, Wolke SL, Mansilla A, Astorga-España MS, Becker EM, de Pereira CMP, Carreno NLV. Extraction of fatty acids and cellulose from the biomass of algae Durvillaea antarctica and Ulva lactuca: An alternative for biorefineries. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Patiño-Jurado B, Gaviria-Calderón A, Botero Cadavid JF, Garcia-Sucerquia J. Competitive fiber optic sensors for the highly selective detection of mercury in water. APPLIED OPTICS 2023; 62:592-600. [PMID: 36821262 DOI: 10.1364/ao.477340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Two competitive fiber optic sensors for the rapid, sensitive, and highly selective detection of mercury in water are designed, fabricated, and evaluated. A wavelength-modulated sensor based on an etched single-mode-multimode-single-mode (E-SMS) optical fiber structure and an intensity-modulated sensor based on fiber optics with a slanted end were fabricated by readily reproducible methods. The sensors were activated with a nanostructured chitosan/maghemite (CS/Fe2O3) composite thin film for the selective detection of mercury ions (Hg2+) in water. The functionalized sensors were implemented to experimentally validate the potential of CS/Fe2O3 thin film for optical sensing of Hg2+ in drinking water. The sensor based on the E-SMS structure exhibited a wavelength-modulated response with a sensitivity of up to 290 pm/(µg/mL), and the sensor based on the slanted end structure showed an intensity-modulated response with a sensitivity of -0.07dBm/(µg/mL). Validation of the experimental assay method proves the ability to selectively detect chemical interactions as low as 1 ng/mL (one part per billion) of Hg2+ in water for both sensors. The high specificity of the two sensors was demonstrated by evaluating their responses to a number of potentially interfering metal ions in water. These sensors are cost-effective, simple to construct, and easy to implement, which makes them very promising for the on-site detection and monitoring of mercury in bodies of water.
Collapse
|
4
|
Nowroozi M, Alijani H, Beyki MH, Yadaei H, Shemirani F. Water decontamination in terms of Hg(II) over thiol immobilized magnesium ferrite: Gum Arabic biosorbent—response surface optimization, kinetic, isotherm and comparing study. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Amruth K, Abhirami K, Sankar S, Ramesan M. Synthesis, characterization, dielectric properties and gas sensing application of polythiophene/chitosan nanocomposites. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Areco MM, Salomone VN, Afonso MDS. Ulva lactuca: A bioindicator for anthropogenic contamination and its environmental remediation capacity. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105468. [PMID: 34507027 DOI: 10.1016/j.marenvres.2021.105468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Coastal regions are subjected to degradation due to anthropogenic pollution. Effluents loaded with variable concentrations of heavy metal, persistent organic pollutant, as well as nutrients are discharged in coastal areas leading to environmental degradation. In the past years, many scientists have studied, not only the effect of different contaminants on coastal ecosystems but also, they have searched for organisms tolerant to pollutants that can be used as bioindicators or for biomonitoring purposes. Furthermore, many researchers have demonstrated the capacity of different marine organisms to remove heavy metals and persistent organic pollutants, as well as to reduce nutrient concentration, which may lead to eutrophication. In this sense, Ulva lactuca, a green macroalgae commonly found in coastal areas, has been extensively studied for its capacity to accumulate pollutants; as a bioindicator; as well as for its remediation capacity. This paper aims to review the information published regarding the use of Ulva lactuca in environmental applications. The review was focused on those studies that analyse the role of this macroalga as a biomonitor or in bioremediation experiments.
Collapse
Affiliation(s)
- María M Areco
- Instituto de Investigación e Ingeniería Ambiental -IIIA, UNSAM, CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. CONICET, Argentina.
| | - Vanesa N Salomone
- Instituto de Investigación e Ingeniería Ambiental -IIIA, UNSAM, CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. CONICET, Argentina
| | - María Dos Santos Afonso
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 3er Piso, Int. Guiraldes, 2160, C1428EHA Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|