1
|
Mohamed A, Dayo M, Alahmadi S, Ali S. Anti-Inflammatory and Antimicrobial Activity of Silver Nanoparticles Green-Synthesized Using Extracts of Different Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1383. [PMID: 39269046 PMCID: PMC11397093 DOI: 10.3390/nano14171383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In this study, an easy, efficient, economical, and eco-friendly green bio-synthesis method was utilized to synthesize silver nanoparticles (AgNPs) using the extracts of four plants: Ginkgo biloba, Cichorium Intybus, Adiantum Capillus-Veneris, and Rosmarinus Officinalis. The synthesis of AgNPs was confirmed by using a uv-vis spectrometer, which showed distinct surface plasmon resonance (SPR) bands. The surface of AgNPs was characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy. The anti-inflammatory activity of Tenoxicam/Meloxicam-loaded AgNPs has been studied using the inhibition of albumin denaturation method. Tenoxicam-loaded AgNPs showed higher % Inhibition, but Meloxicam-loaded AgNPs showed lower % Inhibition. Furthermore, the AgNPs showed excellent antimicrobial activity on both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Amr Mohamed
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- The Higher Institute of Optics Technology (HIOT), Heliopolis, Cairo 17361, Egypt
| | - Marwa Dayo
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
| | - Sana Alahmadi
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
| | - Samah Ali
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- The National Organization for Drug Control and Research, Giza 12622, Egypt
| |
Collapse
|
2
|
He Z, Shen J, Lan M, Gu H. Collagen fiber-reinforced, tough and adaptive conductive organohydrogel e-skin for multimodal sensing applications. J Mater Chem B 2024; 12:6940-6958. [PMID: 38912903 DOI: 10.1039/d4tb00374h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Conductive hydrogels (CHs) with high sensitivity and multifunctional property are considered as excellent materials for wearable devices and flexible electronics. Surface synapses and internal multilayered structures are key factors for highly sensitive pressure sensors. Nevertheless, current CHs lack environmental adaptability, multifunctional perception, and instrument portability, which seriously hinders their application as sensors. Here, waste collagen fibers (buffing dust of leather), polyvinyl alcohol (PVA) and gelatin (Gel) were used as the basic framework of the hydrogel, loaded with a conductive material (silver nanoparticles (BD-CQDs@AgNPs)) and an anti-freezing moisturizer (glycerol (Gly)), resulting in a multifunctional conductive organohydrogel (BPGC-Gly). As a temperature and humidity sensor, it demonstrated an excellent temperature response range (-20-60 °C) and was capable of rapid response (2.4 s) and recovery (1.6 s) to human breathing. As a strain/pressure sensor, it allowed real-time monitoring of human movement and had a high low-pressure sensitivity (S = 4.26 kPa-1, 0-12.5 kPa). Interestingly, BPGC-Gly could also be used as a portable bioelectrode or the acquisition, monitoring and analysis of EMG/ECG signals. In this work, BPGC-Gly was assembled with wireless transmission to achieve multimodal heath detection, which opens new avenues for multi-responsive CHs, comprehensive human health monitoring and next-generation wearable electronic skin (e-skin).
Collapse
Affiliation(s)
- Zhen He
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jialu Shen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Maohua Lan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Thai NX, Chinh NT, Linh BT, Thuy TT, Hoang T. Optimizing Green Synthesis of Hydrotalcite - Silver Nanoparticles using Syzygium Nervosum based Reducing Agent. Chem Asian J 2024; 19:e202400162. [PMID: 38705851 DOI: 10.1002/asia.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Hydrotalcite-silver (HT-Ag) nanoparticles have been involved in various daily crucial applications, such as antibacterial, photocatalytic, adsorption, etc. There are many approaches to synthesizing silver nanoparticles (AgNPs) decorated on hydrotalcite (HT) surface and the most used approach is using a strong reducing agent. Thus, affordable but effective "green" reducing agents - Syzygium nervosum leaf extract, are taken into account in this work to solve several issues related to chemical reducing agents. This work aimed to assess the effect of Syzygium nervosum leaf extract as a reducing agent for green synthesis of AgNPs on HT through an optimizing process using response surface methodology (RSM) and the Box-Benken model. The optimal conditions for the synthesis of AgNPs on HT include a reaction time of 6.15 hours, a reaction temperature of 50 °C, and the ratio of diluted Syzygium nervosum leaf extract to reduce AgNO3 of 50.37 mL/mg. Under the optimal conditions, the yield of the reduction reaction reached 77.54 %, close to the theoretical value of 76.97 %. The optimization model was suitable for the experiment data. Besides, the morphology, density, and characteristics of AgNPs on the surface of HT layers have been determined by using Ultraviolet-visible spectroscopy, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), selected area diffraction, X-ray diffraction, Dynamic light scattering (DLS), Infrared (IR) spectroscopy, Fluorescence emission spectroscopy (FE), Brunauer-Emmett-Teller (BET) methods. The spherical AgNPs were synthesized successfully on the surface of HT with the average particle size of 13.0±1.1 nm. Interestingly, HT-Ag hybrid materials can inhibit strongly the growth of E. coli, S. aureus as well as two antibiotic resistance bacterial strains, P. stutzeri B27, and antibiotic resistance E. coli. Especially, the antibacterial activity quantification and durability of the HT-Ag hybrid materials were also tested. Overall, the HT-Ag hybrid materials are very promising for application in material science and biomedicine fields.
Collapse
Affiliation(s)
- Nguyen Xuan Thai
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Nguyen Thuy Chinh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Bui Thao Linh
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Ha Noi, 100000, Viet Nam
| | - Tran Thanh Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Thai Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| |
Collapse
|
4
|
Zhang W, Cai X, Zhang X, Zou S, Zhu D, Zhang Q, Chen J. AgNPs-Modified Polylactic Acid Microneedles: Preparation and In Vivo/In Vitro Antimicrobial Studies. Pharm Res 2024; 41:93-104. [PMID: 37985572 DOI: 10.1007/s11095-023-03634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To prepare polylactic acid microneedles (PLAMNs) with sustained antibacterial effect to avoid skin infection caused by traditional MNs-based biosensors. METHODS Silver nanoparticles (AgNPs) were synthesized using an in-situ reduction process with polydopamine (PDA). PLAMNs were fabricated using the hot-melt method. A series of pressure tests and puncture experiments were conducted to confirm the physicochemical properties of PLAMNs. Then AgNPs were modified on the surface of PLAMNs through in-situ reduction of PDA, resulting in the formation of PLAMNs@PDA-AgNPs. The in vitro antibacterial efficacy of PLAMNs@PDA-AgNPs was evaluated using agar diffusion assays and bacterial liquid co-culture approach. Wound healing and simulated long-term application were performed to assess the in vivo antibacterial effectiveness of PLAMNs@PDA-AgNPs. RESULTS The MNs array comprised 169 tiny needle tips in pyramidal rows. Strength and puncture tests confirmed a 100% puncture success rate for PLAMNs on isolated rat skin and tin foil. SEM analysis revealed the integrity of PLAMNs@PDA-AgNPs with the formation of new surface substances. EDS analysis indicated the presence of silver elements on the surface of PLAMNs@PDA-AgNPs, with a content of 14.44%. Transepidermal water loss (TEWL) testing demonstrated the rapid healing of micro-pores created by PLAMNs@PDA-AgNPs, indicating their safety. Both in vitro and in vivo tests confirmed antibacterial efficacy of PLAMNs@PDA-AgNPs. CONCLUSIONS In conclusion, the sustained antibacterial activity exhibited by PLAMNs@PDA-AgNPs offers a promising solution for addressing skin infections associated with MN applications, especially when compared to traditional MN-based biosensors. This advancement offers significant potential for the field of MN technology.
Collapse
Affiliation(s)
- Wenqin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Xinyi Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Shiqi Zou
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Danhong Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Qiulong Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, 351100, China
| | - Jianmin Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China.
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, 351100, China.
| |
Collapse
|
5
|
Elsebaie EM, El-Wakeil NHM, Khalil AMM, Bahnasy RM, Asker GA, El-Hassnin MF, Ibraheim SS, El-Farsy MFA, Faramawy AA, Essa RY, Badr MR. Silver Nanoparticle Synthesis by Rumex vesicarius Extract and Its Applicability against Foodborne Pathogens. Foods 2023; 12:foods12091746. [PMID: 37174285 PMCID: PMC10177795 DOI: 10.3390/foods12091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The consumption of foods polluted with different foodborne pathogens such as fungus, viruses, and bacteria is considered a serious cause of foodborne disease in both humans and animals. Multidrug-resistant foodborne pathogens (MRFP) cause morbidity, death, and substantial economic loss, as well as prolonged hospitalization. This study reports on the use of aqueous Rumex leaf extract (ARLE) in the synthesis of silver nanoparticles (ARLE-AgNPs) with versatile biological activities. The synthesized ARLE-AgNPs had spherical shapes with smooth surfaces and an average hydrodynamic size of 27 nm. ARLE-AgNPs inhibited the growth of Escherichia coli ATCC25721, Pseudomonas aeruginosa ATCC27843, Streptococcus gordonii ATCC49716, Enterococcus faecalis ATCC700813, and Staphylococcus aureus ATCC4342. The ARLE-AgNPs were more active against Escherichia coli ATCC25721 than other harmful bacterial strains (26 ± 3 mm). The zone of inhibition for antibacterial activity ranged between 18 ± 3 mm and 26 ± 3 mm in diameter. The nanoparticles' MIC values varied from 5.19 µg/mL to 61 µg/mL, while their MBC values ranged from 46 µg/mL to 119 µg/mL. The nanoparticles that were created had antioxidant potential. The cytotoxic activity was tested using normal fibroblast cell lines (L-929), and the enhanced IC50 value (764.3 ± 3.9 g/mL) demonstrated good biological compatibility. These nanoparticles could be evolved into new antibacterial compounds for MRFP prevention.
Collapse
Affiliation(s)
- Essam Mohamed Elsebaie
- Food Technology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | | | | | - Rasha M Bahnasy
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Galila Ali Asker
- Food Science &Technology Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Marwa Fawzy El-Hassnin
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Suzan S Ibraheim
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | | | - Asmaa Antar Faramawy
- Nutrition &Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31512, Egypt
| | - Rowida Younis Essa
- Food Technology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed Reda Badr
- Food Science and Technology Department, Agriculture Faculty, Tanta University, Tanta 31512, Egypt
| |
Collapse
|
6
|
Kazantsev SO, Bakina OV, Pervikov AV, Rodkevich NG, Quang NH, Le Thi LA, Timofeev SS, Lozhkomoev AS. Antimicrobial Activity and Sorption Behavior of Al 2O 3/Ag Nanocomposites Produced with the Water Oxidation of Bimetallic Al/Ag Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3888. [PMID: 36364663 PMCID: PMC9658416 DOI: 10.3390/nano12213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The water oxidation of bimetallic Al/Ag nanoparticles has been shown to yield nanoscale structures whose morphology, phase composition and textural characteristics are determined by the synthesis conditions. Flower-like nanoscale structures with silver nanoparticles, with an average size of 17 nm, are formed in water at 60 °C. Under hydrothermal conditions at temperatures of 200 °C and a pressure of 16 MPa, boehmite nanoplatelets with silver nanoparticles, with an average size of 22 nm, are formed. The oxidation of Al/Ag nanoparticles using humid air at 60 °C and 80% relative humidity results in the formation of rod-shaped bayerite nanoparticles and Ag nanoparticles with an average size of 19 nm. The thermal treatment of nanoscale structures obtained at a temperature of 500 °C has been shown to lead to a phase transition into γ-Al2O3, while maintaining the original morphology, and to a decrease in the average size of the silver nanoparticles to 12 nm and their migration to the surface of nanoscale structures. The migration of silver to the nanoparticle surface influences the formation of a double electric layer of particles, and leads to a shift in the pH of the zero-charge point by approximately one, with the nanostructures acquiring pronounced antimicrobial properties.
Collapse
Affiliation(s)
- Sergey O. Kazantsev
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055 Tomsk, Russia
| | - Olga V. Bakina
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055 Tomsk, Russia
| | - Aleksandr V. Pervikov
- Laboratory of Physical Chemistry of Ultrafine Materials, Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055 Tomsk, Russia
| | - Nikolay G. Rodkevich
- Laboratory of Physical Chemistry of Ultrafine Materials, Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055 Tomsk, Russia
| | - Nguyen Hong Quang
- Laboratory Military Medicine and Adaptation, Vietnam-Russia Tropical Center, Institute of Bio-Medicine, Ngia Do, Kau Zai, St. Nguyen Van Huen, 63, Hanoi 11307, Vietnam
| | - Lan Anh Le Thi
- Laboratory of Toxicity and Tropical Diseases, Vietnam-Russia Tropical Center, Institute of Bio-Medicine, Ngia Do, Kau Zai, St. Nguyen Van Huen, 63, Hanoi 11307, Vietnam
| | - Sergei S. Timofeev
- Laboratory of Physical Chemistry of Ultrafine Materials, Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055 Tomsk, Russia
| | - Aleksandr S. Lozhkomoev
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055 Tomsk, Russia
| |
Collapse
|
7
|
Ali F, Younas U, Nazir A, Hassan F, Iqbal M, Hamza BUZ, Mukhtar S, Khalid A, Ishfaq A. Biosynthesis and characterization of silver nanoparticles using strawberry seed extract and evaluation of their antibacterial and antioxidant activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Jiang L, Jia Z, Xu X, Chen Y, Peng W, Zhang J, Wang H, Li S, Wen J. Preparation of antimicrobial activated carbon fiber by loading with silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|