1
|
Lohitha T, Albert HM. Biosynthesis, Structural, Spectroscopic, Photoluminescence, and Antifungal Activity of Ni-doped CeO 2 Nanoparticles. J Fluoresc 2024:10.1007/s10895-024-03831-5. [PMID: 38958905 DOI: 10.1007/s10895-024-03831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Pedalium Murex leaf extract was used in this study to create Nickel-doped Cerium oxide (Ni-CeO2) nanoparticles at 3 mol% and 5 mol% molar concentrations. The biosynthesized process was applied for the fabrication of Ni-CeO2 NPs. The X-ray diffraction method was used to identify their crystal structure. The XRD measurements showed that the Ni-CeO2 NPs crystallized into the face-centred cubic system. Fourier transform infrared spectral study was applied to explore the molecular vibrations and chemical bonding. The surface texture and chemical ingredients of Ni-CeO2 NPs were studied using field-emission scanning electron microscopy and energy-dispersive X-ray analysis. The EDX mapping spectra illustrate the uniform dispersal of Ce, Ni, and O atoms over the sample's surface. X-ray photoelectron spectroscopy (XPS) was conducted to confirm the chemical state of the Ni-CeO2 NPs. UV-Vis spectrum study was performed to ascertain the photon absorption, bandgap, and Urbach edge of Ni-CeO2 NPs. Photoluminescence (PL) research has been used to study the light-emitting characteristic of Ni-CeO2 NPs. The emissive intensity transition corresponding to Ni-CeO2 NPs was found to increase with the dopant level. The CIE 1931 chromaticity map was plotted to find the aptness of the samples for optical uses. The antifungal ability of Ni-CeO2 NPs was evaluated against the fungi candida albicans and candida krusein with the agar well-diffusion process. The fungicidal activity of the 3 mol% Ni doped CeO2 nanoparticles has shown a maximum zone of inhibition. The experimental findings illustrate the utility of Ni-CeO2 NPs for optical and antifungal applications.
Collapse
Affiliation(s)
- T Lohitha
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai, 600119, India
| | - Helen Merina Albert
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai, 600119, India.
| |
Collapse
|
2
|
Bathula B, Eadi SB, Lee HD, Yoo K. ZnWO 4 nanorod-colloidal SnO 2 quantum dots core@shell heterostructures: Efficient solar-light-driven photocatalytic degradation of tetracycline. ENVIRONMENTAL RESEARCH 2023; 228:115851. [PMID: 37062476 DOI: 10.1016/j.envres.2023.115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Zinc tungsten oxide (ZW) and colloidal SnO2 quantum dots (CS) were synthesized individually by hydrothermal and wet chemical methods. ZW-CS core@shell nanorods were prepared using a sonochemical method for the enhanced photocatalytic activity of tetracycline (TC) degradation. ZW-CS core@shell nanorods were systematically characterized by structural, morphological mapping and optical techniques. All characterization techniques were synchronized to confirm the construction of core@shell nanorods. Optical absorption studies indicate an increased light-capturing efficiency along with a reduced bandgap from 3.56 to 3.23 eV, which is further supported by photoluminescence. Mapping analysis from SEM and HR-TEM evidence the presence of elements as well as a core@shell nanostructure. The optimized sample of ZW-CS 1.0 shows improved photocatalytic degradation of TC under stimulated solar light. The TC degradation efficiency by ZW-CS 1.0 core@shell nanorods was about 97% within 2 h. The formation of core@shell nanorod structure might be the reason for the better photocatalytic tetracycline degradation performance.
Collapse
Affiliation(s)
- Babu Bathula
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Kisoo Yoo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
3
|
Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange. Catalysts 2023. [DOI: 10.3390/catal13020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In the present study, pristine ZnWO4, CoWO4, and mixed metal Zn0.5Co0.5WO4 were synthesized through the hydrothermal process using a Teflon-lined autoclave at 180 ℃. The synthesized nanomaterials were characterized by various spectroscopic techniques, such as TEM, FTIR, UV–vis, XRD, and SEM-EDX-mapping to confirm the formation of nanocomposite material. The synthesized materials were explored as photocatalysts for the degradation of xylenol orange (XO) under a visible light source and a comparative study was explored to check the efficiency of the bimetallic co-doped nanocomposite to the pristine metal tungstate NPs. XRD analysis proved that reinforcement of Co2+ in ZnWO4 lattice results in a reduction in interplanar distance from 0.203 nm to 0.185 nm, which is reflected in its crystallite size, which reduced from 32 nm to 24 nm. Contraction in crystallite size reflects on the optical properties as the energy bandgap of ZnWO4 reduced from 3.49 eV to 3.33 eV in Zn0.5Co0.5WO4, which is due to the formation of a Z-scheme for charge transfer and enhancement in photocatalytic efficiency. The experimental results suggested that ZnWO4, CoWO4, and Zn0.5Co0.5WO4 NPs achieved a photocatalytic efficiency of 97.89%, 98.10%, and 98.77% towards XO in 120 min of visible solar light irradiation. The kinetics of photodegradation was best explained by pseudo-first-order kinetics and the values of apparent rate const (kapp) also supported the enhanced photocatalytic efficiency of mixed metal Zn0.5Co0.5WO4 NPs towards XO degradation.
Collapse
|
4
|
Zhang J, Ma J, Sun X, Yi Z, Xian T, Wu X, Liu G, Wang X, Yang H. Construction of Z-Scheme Ag 2MoO 4/ZnWO 4 Heterojunctions for Photocatalytically Removing Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1159-1172. [PMID: 36628490 DOI: 10.1021/acs.langmuir.2c02939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Facilitation of the photocarrier separation is a crucial strategy for developing highly efficient photocatalysts in eliminating environmental pollutants. Herein we have developed a new kind of Ag2MoO4/ZnWO4 (AMO/ZWO) composite photocatalysts with a Z-scheme mechanism by anchoring AMO nanoparticles onto ZWO nanorods. Multiple characterization methodologies and density functional theory (DFT) calculations were employed to study the performances of the AMO/ZWO heterojunctions as well as the underlying photocatalytic mechanism. Simulated-sunlight-driven photodegradation experiments for removing methylene blue (MB) demonstrates that the 8%AMO/ZWO heterojunction can photocatalytically remove 99.8% of MB within 60 min, and the reaction rate constant is obtained as 0.10199 min-1, which is enhanced by 6.8 (or 4.9) times when compared with that of pure ZWO (or AMO). On the base of the experimental results and DFT calculations, the enhanced photocatalytic mechanism of the AMO/ZWO heterojunctions was revealed to be the efficient separation of photocarriers via a Z-scheme transfer process. In addition, photodegradion of various organic pollutants over 8%AMO/ZWO was further compared and aimed at incorporating it into industrial application in pollutant removal.
Collapse
Affiliation(s)
| | | | | | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang621010, China
| | - Tao Xian
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining810008, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou416000, China
| | | | | | | |
Collapse
|
5
|
Vasilyeva MS, Lukiyanchuk IV, Yarovaya TP, Rybalka AA. Plasma Electrolytic Synthesis and Study of TiO2–WO3–ZnWO4 Film Heterostructures. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622090170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ahmed AI, Kospa DA, Gamal S, Samra SE, Salah AA, El-Hakam SA, Awad Ibrahim A. Fast and simple fabrication of reduced graphene oxide-zinc tungstate nanocomposite with enhanced photoresponse properties as a highly efficient indirect sunlight driven photocatalyst and antibacterial agent. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Abubakar HL, Tijani JO, Abdulkareem SA, Mann A, Mustapha S. A review on the applications of zinc tungstate (ZnWO 4) photocatalyst for wastewater treatment. Heliyon 2022; 8:e09964. [PMID: 35874051 PMCID: PMC9305394 DOI: 10.1016/j.heliyon.2022.e09964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
The monoclinic wolframite-phase structure of ZnWO4 materials has been frequently synthesised, characterised, and applied in optical fibres, environmental decontamination, electrochemistry, photonics, catalysis, and not limited to magnetic applications. However, the problems of crystal growth conditions and mechanisms, growth, the crystal quality, stability, and the role of synthesis parameters of ZnWO4 nanoparticles remain a challenge limiting its commercial applications. This review presents recent advances of ZnWO4 as an advanced multi-functional material for Industrial wastewater treatment. The review also examines the influence of the synthesis parameters on the properties of ZnWO4 and provides insight into new perspectives on ZnWO4-based photocatalyst. Many researches have shown significant improvement in the efficiency of ZnWO4 by mixing with polymers and doping with metals, nonmetals, and other nanoparticles. The review also provides information on the mechanism of doping ZnWO4 with metals, non-metals, metalloids, metals oxides, and polymers based on different synthesis methods for bandgap reduction and extension of its photocatalytic activity to the visible region. The doped ZnWO4 photocatalyst was a more effective and environmentally friendly material for removing organic and inorganic contaminants in industrial wastewater than ordinary ZnWO4 nanocrystalline under suitable growth conditions.
Collapse
Affiliation(s)
- Hassana Ladio Abubakar
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Department of Chemistry, Nile University of Nigeria, Airport Road, Jabi, Abuja, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Nanotechnology Research Group, African Centre of Excellence on Food Safety and Mycotoxins, Federal University of Technology, PMB 65, Bosso, Minna, Niger State, Nigeria
| | - Saka Ambali Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Nanotechnology Research Group, African Centre of Excellence on Food Safety and Mycotoxins, Federal University of Technology, PMB 65, Bosso, Minna, Niger State, Nigeria
| | - Abdullahi Mann
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria
| | - Saheed Mustapha
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Nanotechnology Research Group, African Centre of Excellence on Food Safety and Mycotoxins, Federal University of Technology, PMB 65, Bosso, Minna, Niger State, Nigeria
| |
Collapse
|