1
|
Alsalme A, Hassan MM, Eltawil MA, Amin A, Soltan A, Messih MA, Ahmed M. Rational sonochemical engineering of Ag 2CrO 4/g-C 3N 4 heterojunction for eradicating RhB dye under full broad spectrum. Heliyon 2024; 10:e31221. [PMID: 38813157 PMCID: PMC11133822 DOI: 10.1016/j.heliyon.2024.e31221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
In this novel research, S-scheme Ag2CrO4/g-C3N4 heterojunctions were generated by sonochemical hybridization of different compositions of Ag2CrO4 nanoparticles [EVB = +2.21 eV] and g-C3N4 sheets [ECB = -1.3 eV] for destructing RhB dye under artificial solar radiation. The as-synthesized nanocomposites were subjected to X-ray diffraction [XRD], diffuse reflectance spectrum [DRS], X-ray photoelectron spectroscopy [XPS], N2-adsorption-desorption isotherm, photoluminescence [PL] and high resolution transmission electron microscope [HRTEM] analysis to explore the interfacial interactions between g-C3N4 sheets and Ag2CrO4 nanoparticles. Spherical Ag2CrO4 nanoparticles deposited homogeneously on the wrinkles points of g-C3N4 sheets at nearly equidistant from each other facilitating the uniform absorption of solar radiations. The absorbability of solar radiations was enhanced by introducing 20 wt % Ag2CrO4 on g-C3N4 sheets. The surface area of g-C3N4 sheets was reduced from 37.5 to 16.4 m2/g and PL signal intensity diminished by 80 % implying the successful interfacial interaction between Ag2CrO4 nanoparticles and g-C3N4 sheets. The photocatalytic performance of heterojunctions containing 20 % Ag2CrO4 and 80 % g-C3N4 destructed 96 % of RhB dye compared with 60 and 33 % removal on the surface of pristine g-C3N4 sheets and Ag2CrO4, respectively. Benzoquinone and ammonium oxalate are strongly scavenged the dye decomposition revealing the strong influence of valence band holes of Ag2CrO4 and superoxide radicals in destructing RhB dye under solar radiations. S-scheme charge transportation mechanism was suggested rather than type II heterojunction on the light of scavenger trapping experiments results and PL spectrum of terephthalic acid. Overall, this research work illustrated the manipulation of novel S-scheme heterojunction with efficient redox power for destructing various organic pollutants persisted in water resources.
Collapse
Affiliation(s)
- Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O.2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed M. Hassan
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| | | | - A.E. Amin
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| | - Ayman Soltan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - M.F. Abdel Messih
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| | - M.A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| |
Collapse
|
2
|
Moussadik A, Lazar NE, Mazkad D, Siro Brigiano F, Baert K, Hauffman T, Benzaouak A, Abrouki Y, Kacimi M, Tielens F, Halim M, El Hamidi A. Investigation of electronic and photocatalytic properties of AgTi2(PO4)3 NASICON-type phosphate: Combining experimental data and DFT calculations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
AbuMousa RA, Khezami L, Ismail M, Ben Aissa MA, Modwi A, Bououdina M. Efficient Mesoporous MgO/g-C 3N 4 for Heavy Metal Uptake: Modeling Process and Adsorption Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3945. [PMID: 36432231 PMCID: PMC9693060 DOI: 10.3390/nano12223945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Removing toxic metal ions arising from contaminated wastewaters caused by industrial effluents with a cost-effective method tackles a serious concern worldwide. The adsorption process onto metal oxide and carbon-based materials offers one of the most efficient technologies adopted for metal ion removal. In this study, mesoporous MgO/g-C3N4 sorbent is fabricated by ultrasonication method for the uptake Pb (II) and Cd (II) heavy metal ions from an aqueous solution. The optimum conditions for maximum uptake: initial concentration of metal ions 250 mg g-1, pH = 5 and pH = 3 for Pb++ and Cd++, and a 60 mg dose of adsorbent. In less than 50 min, the equilibrium is reached with a good adsorption capacity of 114 and 90 mg g-1 corresponding to Pb++ and Cd++, respectively. Moreover, the adsorption isotherm models fit well with the Langmuir isotherm, while the kinetics model fitting study manifest a perfect fit with the pseudo-second order. The as fabricated mesoporous MgO/g-C3N4 sorbent exhibit excellent Pb++ and Cd++ ions uptake and can be utilized as a potential adsorbent in wastewater purification.
Collapse
Affiliation(s)
- Rasha A. AbuMousa
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Lotfi Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Mukhtar Ismail
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohamed Ali Ben Aissa
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Abueliz Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
4
|
Lin H, Yang Y, Shang Z, Li Q, Niu X, Ma Y, Liu A. Study on the Enhanced Remediation of Petroleum-Contaminated Soil by Biochar/g-C3N4 Composites. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148290. [PMID: 35886143 PMCID: PMC9321450 DOI: 10.3390/ijerph19148290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023]
Abstract
This work developed an environmentally-friendly soil remediation method based on BC and g-C3N4, and demonstrated the technical feasibility of remediating petroleum-contaminated soil with biochar/graphite carbon nitride (BC/g-C3N4). The synthesis of BC/g-C3N4 composites was used for the removal of TPH in soil via adsorption and photocatalysis. BC, g-C3N4, and BC/g-C3N4 have been characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller surface area analyzer (BET), FT-IR, and X-ray diffraction (XRD). BC/g-C3N4 facilitates the degradation due to reducing recombination and better electron-hole pair separation. BC, g-C3N4, and BC/g-C3N4 were tested for their adsorption and photocatalytic degradation capacities. Excellent and promising results are brought out by an apparent synergism between adsorption and photocatalysis. The optimum doping ratio of 1:3 between BC and g-C3N4 was determined by single-factor experiments. The removal rate of total petroleum hydrocarbons (TPH) by BC/g-C3N4 reached 54.5% by adding BC/g-C3N4 at a dosing rate of 0.08 g/g in a neutral soil with 10% moisture content, which was 2.12 and 1.95 times of BC and g-C3N4, respectively. The removal process of TPH by BC/g-C3N4 conformed to the pseudo-second-order kinetic model. In addition, the removal rates of different petroleum components in soil were analyzed in terms of gas chromatography–mass spectrometry (GC-MS), and the removal rates of nC13-nC35 were above 90% with the contaminated soil treated by BC/g-C3N4. The radical scavenger experiments indicated that superoxide radical played the major role in the photocatalytic degradation of TPH. This work definitely demonstrates that the BC/g-C3N4 composites have great potential for application in the remediation of organic pollutant contaminated soil.
Collapse
Affiliation(s)
- Hongyang Lin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (H.L.); (Y.Y.)
| | - Yang Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (H.L.); (Y.Y.)
| | - Zhenxiao Shang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
| | - Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China;
| | - Xiaoyin Niu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
| | - Yanfei Ma
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
- Correspondence: (Y.M.); (A.L.)
| | - Aiju Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
- Correspondence: (Y.M.); (A.L.)
| |
Collapse
|
5
|
Modwi A, Khezami L, Ghoniem MG, Nguyen-Tri P, Baaloudj O, Guesmi A, AlGethami FK, Amer MS, Assadi AA. Superior removal of dyes by mesoporous MgO/g-C 3N 4 fabricated through ultrasound method: Adsorption mechanism and process modeling. ENVIRONMENTAL RESEARCH 2022; 205:112543. [PMID: 34915029 DOI: 10.1016/j.envres.2021.112543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The present research concerns the synthesis of a mesoporous composite characterized with high surface area and superior adsorption capacity in order to investigate its efficacity in removing hazardous and harmful dyes molecules from water. The synthesized mesoporous composite, MgO/g-C3N4 (MGCN), was successfully prepared through the sonication method in a methanolic solution followed by an evaporation and a calcination process. The configuration, crystalline phase, surface properties, chemical bonding, and morphological study of the fabricated nanomaterials were investigated via XRD, BET, FESEM, HRTEM, XPS, and FTIR instrumentation. The obtained nanomaterials were used as sorbents of Congo Red (CR) and Basic Fuchsin (BF) dyes from aqueous solutions. Batch elimination experimental studies reveal that the elimination of CR and BF dyes from an aqueous solution onto the MGCN surface was pH-dependent. The highest removal of CR and BF pollutants occurs, respectively, at pH 5 and 7. The absorptive elimination of CR and BF dyes into the MGCN surface was well-fitted with a pseudo-second-order kinetics and Langmuir model. In this concern, the maximum nanocomposite elimination capacity for CR and BF was observed to be 1250 and 1791 mg g-1, respectively. This investigation confirms that MGCN composite is an obvious and efficient adsorbent of CR, BF, and other organic dyes from wastewater.
Collapse
Affiliation(s)
- A Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - L Khezami
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Chemistry Department, Riyadh, Saudi Arabia
| | - M G Ghoniem
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Chemistry Department, Riyadh, Saudi Arabia
| | - P Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, University Du Quebec Trois-Rivieres (UQTR), 3351, C.P. 500, Trois-Rivieres, Quebec, G9A 5H7, Canada.
| | - O Baaloudj
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, Algiers, Algeria
| | - A Guesmi
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Chemistry Department, Riyadh, Saudi Arabia
| | - F K AlGethami
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Chemistry Department, Riyadh, Saudi Arabia
| | - M S Amer
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - A A Assadi
- Univ Rennes, ENSCR / UMR CNRS 6226, 11 Allée de Beaulieu, 35700, Rennes, France
| |
Collapse
|
6
|
Zhu Y, Zhao F, Wang F, Zhou B, Chen H, Yuan R, Liu Y, Chen Y. Combined the Photocatalysis and Fenton-like Reaction to Efficiently Remove Sulfadiazine in Water Using g-C 3N 4/Ag/γ-FeOOH: Insights Into the Degradation Pathway From Density Functional Theory. Front Chem 2021; 9:742459. [PMID: 34676199 PMCID: PMC8525599 DOI: 10.3389/fchem.2021.742459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Sulfadiazine (SDZ) is a common antibiotic pollutant in wastewater. Given that it poses a risk as an environmental pollutant, finding effective ways to treat it is important. In this paper, the composite catalytic material g-C3N4/Ag/γ-FeOOH was prepared, and its degradation performance was studied. g-C3N4/Ag/γ-FeOOH had a superior degradation effect on SDZ than g-C3N4 and γ-FeOOH. Compared with different g-C3N4 loadings and different catalyst dosages (5, 10, 25, and 50 mg/L), 2 mg/L g-C3N4/Ag/γ-FeOOH with a g-C3N4 loading of 5.0 wt% has the highest degradation promotion rate for SDZ, reaching up to 258.75% at 600 min. In addition, the photocatalytic enhancement mechanism of the catalyst was studied. Density functional theory (DFT) calculations indicated that the enhancement of photocatalytic activity was related to the narrowing of the forbidden band and the local electron density of the valence band. The bandgap of the catalyst was gradually narrowed from 2.7 to 1.05 eV, which can increase the light absorption intensity and expand the absorption edge. The density of states diagram showed that the local resonance at the interface could effectively improve the separation efficiency of e−-h+ pairs. Four degradation paths of SDZ were speculated based on DFT calculations. The analysis confirmed that the degradation path of SDZ primarily included Smiles-type rearrangement, SO2 extrusion, and S-N bond cleavage processes.
Collapse
Affiliation(s)
- Yangchen Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Furong Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Fei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Beihai Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuxin Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuefang Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|