1
|
Zhu B, Dong Q, Huang J, Yang M, Chen X, Zhai C, Chen Q, Wang B, Tao H, Chen L. Self-Assembly of Bi 2Sn 2O 7/β-Bi 2O 3 S-Scheme Heterostructures for Efficient Visible-Light-Driven Photocatalytic Degradation of Tetracycline. ACS OMEGA 2023; 8:13702-13714. [PMID: 37091378 PMCID: PMC10116523 DOI: 10.1021/acsomega.2c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Fabrication of S-scheme heterojunctions with enhanced redox capability offers an effective approach to address environmental remediation. In this study, high-performance Bi2Sn2O7/β-Bi2O3 S-scheme heterojunction photocatalysts were fabricated via the in situ growth of Bi2Sn2O7 on β-Bi2O3 microspheres. The optimized Bi2Sn2O7/β-Bi2O3 (BSO/BO-0.4) degradation efficiency for tetracycline hydrochloride was 95.5%, which was 2.68-fold higher than that of β-Bi2O3. This improvement originated from higher photoelectron-hole pair separation efficiency, more exposed active sites, excellent redox capacity, and efficient generation of ·O2 - and ·OH. Additionally, Bi2Sn2O7/β-Bi2O3 exhibited good stability against photocatalytic degradation, and the degradation efficiency remained >89.7% after five cycles. The photocatalytic mechanism of Bi2Sn2O7/β-Bi2O3 S-scheme heterojunctions was elucidated. In this study, we design and fabricate high-performance heterojunction photocatalysts for environmental remediation using S-scheme photocatalysts.
Collapse
Affiliation(s)
- Baikang Zhu
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Qinbin Dong
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianghua Huang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mengmeng Yang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianlei Chen
- Zhoushan
Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, Zhejiang 316000, China
| | - Chunyang Zhai
- School
of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315021, China
| | - Qingguo Chen
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bohong Wang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hengcong Tao
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Li Chen
- Department
of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100036, China
| |
Collapse
|
2
|
Zhang LX, Qi MY, Tang ZR, Xu YJ. Heterostructure-Engineered Semiconductor Quantum Dots toward Photocatalyzed-Redox Cooperative Coupling Reaction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0073. [PMID: 36930756 PMCID: PMC10013965 DOI: 10.34133/research.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Semiconductor quantum dots have been emerging as one of the most ideal materials for artificial photosynthesis. Here, we report the assembled ZnS-CdS hybrid heterostructure for efficient coupling cooperative redox catalysis toward the oxidation of 1-phenylethanol to acetophenone/2,3-diphenyl-2,3-butanediol (pinacol) integrated with the reduction of protons to H2. The strong interaction and typical type-I band-position alignment between CdS quantum dots and ZnS quantum dots result in efficient separation and transfer of electron-hole pairs, thus distinctly enhancing the coupled photocatalyzed-redox activity and stability. The optimal ZnS-CdS hybrid also delivers a superior performance for various aromatic alcohol coupling photoredox reaction, and the ratio of electrons and holes consumed in such redox reaction is close to 1.0, indicating a high atom economy of cooperative coupling catalysis. In addition, by recycling the scattered light in the near field of a SiO2 sphere, the SiO2-supported ZnS-CdS (denoted as ZnS-CdS/SiO2) catalyst can further achieve a 3.5-fold higher yield than ZnS-CdS hybrid. Mechanistic research clarifies that the oxidation of 1-phenylethanol proceeds through the pivotal radical intermediates of •C(CH3)(OH)Ph. This work is expected to promote the rational design of semiconductor quantum dots-based heterostructured catalysts for coupling photoredox catalysis in organic synthesis and clean fuels production.
Collapse
Affiliation(s)
- Lin-Xing Zhang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
3
|
Zhao H, Zhang Y, Liu Q, Jing X, Yang W, Akanyange SN, Liu J, Xie H, Wang X, Crittenden J, Lyu X, Chang H. WSe 2-loaded co-catalysts Cu 3P and CNTs: Improving photocatalytic hydrogen precipitation and photocatalytic memory performance. J Colloid Interface Sci 2023; 629:937-947. [PMID: 36208606 DOI: 10.1016/j.jcis.2022.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 12/28/2022]
Abstract
Photocatalytic decomposition of water for hydrogen production using semiconductor photocatalysts in visible light is considered one of the most promising environmentally friendly ways to produce hydrogen. In this work, the calcination method was adopted to prepare an efficient Cu3P/WSe2/CNTs composite photocatalysts. Cu3P and carbon nanotubes (CNTs) were used as co-catalysts to reduce the composite rate of the photogenerated supports of the photocatalyst. The unique metallic properties of Cu3P as a transition metal phosphide makes it a cost-effective alternative to noble metal co-catalysts. CNTs can serve both as co-catalysts and as a suitable carrier to accelerate the transfer rate of photogenerated electrons. The experimental results showed that the Cu3P/WSe2/CNTs composite photocatalyst exhibited stronger activities in photocatalytic hydrogen production than pure WSe2. In particular, a higher quantum yield of 30.27% at the range 400-700 nm was achieved with a loading of 4% CNTs, a calcination temperature of 300 °C and a calcination time of 2.0 h. In contrast, the quantum yield of pure WSe2 was only 14.01%. The highest hydrogen production rate was 6.987 mL in 4.0 h, and the average hydrogen production rate was 712.985 μmol·h-1g-1, which was 2.39 times higher than that of pure WSe2.The catalytic memory performance of the composite samples was also examined. The results indicated that the best catalytic memory performance was achieved under the pre-illumination condition of 5.0 h. The amount of hydrogen produced under darkness for 4.0 h was up to 4.934 mL and the average hydrogen production rate was 503.454 μmol·h-1g-1. The average hydrogen production rate was 1.69 times higher than the average hydrogen production rate of pure WSe2 under light conditions.
Collapse
Affiliation(s)
- Huaqing Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoqing Jing
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weiting Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Stephen Nyabire Akanyange
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jia Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hongbo Xie
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiutong Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0595, USA
| | - Xianjun Lyu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hui Chang
- College of Electrical and Automation Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
4
|
Liu Z, Yu X, Yang F, Wang K, Zhang J, Zhao N, Chen L, Niu J. Synthesis of Co‐doped Cu
2
O Particles and Evaluation of their Photocatalytic Activity in the Degradation of Norfloxacin. ChemistrySelect 2022. [DOI: 10.1002/slct.202203682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Zongbin Liu
- School of Science Xi'an University of Technology 710048 Xi'an China
| | - Xiaojiao Yu
- School of Science Xi'an University of Technology 710048 Xi'an China
| | - Fan Yang
- School of Science Xi'an University of Technology 710048 Xi'an China
| | - Kai Wang
- School of Science Xi'an University of Technology 710048 Xi'an China
| | - Jian Zhang
- School of Science Xi'an University of Technology 710048 Xi'an China
| | - Ningning Zhao
- School of Science Xi'an University of Technology 710048 Xi'an China
| | - Lei Chen
- School of Science Xi'an University of Technology 710048 Xi'an China
| | - Jinfen Niu
- School of Science Xi'an University of Technology 710048 Xi'an China
| |
Collapse
|