Ma Z, Li X, Fan G, Deng L, He Y. Construction of 3D sheet-packed hierarchical MoS
2/BiOBr heterostructures with remarkably enhanced photocatalytic performance for tetracycline and levofloxacin degradation.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;
30:59737-59748. [PMID:
37016255 DOI:
10.1007/s11356-023-26740-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
In this paper, MoS2 nanosheets were prepared and deposited on BiOBr microflowers through deposition-hydrothermal strategy. MoS2 exhibited a string of nanosheets with wrinkled layer outlook, and MoS2/BiOBr composites displayed a micro-flower morphology with the diameter of 2-3 μm. Visible-light harvesting performance was significantly improved in the region of 400-600 nm for MoS2/BiOBr. The obtained MoS2/BiOBr samples exhibited tremendous enhanced catalytic activity, which could degrade 92.96% of tetracycline and 90.31% of levofloxacin within 70 min. The photo-generated holes and ⋅OH radicals played the dominant roles in the whole photocatalytic decomposition process. Based on the analysis of DRS, BET, PL, and electrochemical results, the remarkably improved photocatalytic performance may be ascribed to the synergistic effect of strong visible-light harvesting ability, enhanced BET surface area, and faster separation or transfer efficiency of photo-generated charges.
Collapse