• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4640427)   Today's Articles (593)   Subscriber (50376)
For: Arun Kumar M, Khemchandani R, Gopal M, Chandra S. Knowledge based Least Squares Twin support vector machines. Inf Sci (N Y) 2010. [DOI: 10.1016/j.ins.2010.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
A Novel Twin Support Vector Machine with Generalized Pinball Loss Function for Pattern Classification. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
2
Large-scale pinball twin support vector machines. Mach Learn 2021. [DOI: 10.1007/s10994-021-06061-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
3
Yuan C, Yang L. Capped L2,p-norm metric based robust least squares twin support vector machine for pattern classification. Neural Netw 2021;142:457-478. [PMID: 34273616 DOI: 10.1016/j.neunet.2021.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022]
4
Jiang H, Yang Z, Li Z. Non-parallel hyperplanes ordinal regression machine. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
5
Tanveer M, Tiwari A, Choudhary R, Jalan S. Sparse pinball twin support vector machines. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.02.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
6
Jayadeva, Pant H, Sharma M, Soman S. Twin Neural Networks for the classification of large unbalanced datasets. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.07.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
7
EigenSample: A non-iterative technique for adding samples to small datasets. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2017.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Huang H, Wei X, Zhou Y. Twin support vector machines: A survey. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
9
PAC-Bayes bounds for twin support vector machines. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
10
Ding S, Zhang N, Zhang X, Wu F. Twin support vector machine: theory, algorithm and applications. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2245-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Robust energy-based least squares twin support vector machines. APPL INTELL 2016. [DOI: 10.1007/s10489-015-0751-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
12
A Learning Framework of Nonparallel Hyperplanes Classifier. ScientificWorldJournal 2015;2015:497617. [PMID: 26167527 PMCID: PMC4488010 DOI: 10.1155/2015/497617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 11/17/2022]  Open
13
Tomar D, Agarwal S. A comparison on multi-class classification methods based on least squares twin support vector machine. Knowl Based Syst 2015. [DOI: 10.1016/j.knosys.2015.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
14
Soman S, Jayadeva. High performance EEG signal classification using classifiability and the Twin SVM. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
15
Twin Support Vector Machine: A review from 2007 to 2014. EGYPTIAN INFORMATICS JOURNAL 2015. [DOI: 10.1016/j.eij.2014.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
16
Tian Y, Qi Z. Review on: Twin Support Vector Machines. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40745-014-0018-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Tanveer M. Application of smoothing techniques for linear programming twin support vector machines. Knowl Inf Syst 2014. [DOI: 10.1007/s10115-014-0786-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
18
Analyzing big data with the hybrid interval regression methods. ScientificWorldJournal 2014;2014:243921. [PMID: 25143968 PMCID: PMC4131111 DOI: 10.1155/2014/243921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/07/2014] [Indexed: 12/02/2022]  Open
19
Tian Y, Qi Z, Ju X, Shi Y, Liu X. Nonparallel support vector machines for pattern classification. IEEE TRANSACTIONS ON CYBERNETICS 2014;44:1067-1079. [PMID: 24013833 DOI: 10.1109/tcyb.2013.2279167] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
20
Tanveer M. Robust and Sparse Linear Programming Twin Support Vector Machines. Cognit Comput 2014. [DOI: 10.1007/s12559-014-9278-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
21
LÜ Y, YANG H. A Multi-model Approach for Soft Sensor Development Based on Feature Extraction Using Weighted Kernel Fisher Criterion. Chin J Chem Eng 2014. [DOI: 10.1016/s1004-9541(14)60007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
22
Li HX, Yang JL, Zhang G, Fan B. Probabilistic support vector machines for classification of noise affected data. Inf Sci (N Y) 2013. [DOI: 10.1016/j.ins.2012.09.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
23
Huang CH. A reduced support vector machine approach for interval regression analysis. Inf Sci (N Y) 2012. [DOI: 10.1016/j.ins.2012.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
24
Peng X, Xu D. Twin Mahalanobis distance-based support vector machines for pattern recognition. Inf Sci (N Y) 2012. [DOI: 10.1016/j.ins.2012.02.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
25
Multiple birth support vector machine for multi-class classification. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1108-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
26
Ding S, Yu J, Qi B, Huang H. An overview on twin support vector machines. Artif Intell Rev 2012. [DOI: 10.1007/s10462-012-9336-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
27
Peng X. Building sparse twin support vector machine classifiers in primal space. Inf Sci (N Y) 2011. [DOI: 10.1016/j.ins.2011.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA