1
|
Lim JG, Park SJ, Lee SM, Jeong Y, Kim J, Lee S, Park J, Hwang GW, Lee KS, Park S, Jang HJ, Ju BK, Park JK, Kim I. Hybrid CMOS-Memristor synapse circuits for implementing Ca ion-based plasticity model. Sci Rep 2024; 14:17915. [PMID: 39095461 PMCID: PMC11297293 DOI: 10.1038/s41598-024-68359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Neuromorphic computing research is being actively pursued to address the challenges posed by the need for energy-efficient processing of big data. One of the promising approaches to tackle the challenges is the hardware implementation of spiking neural networks (SNNs) with bio-plausible learning rules. Numerous research works have been done to implement the SNN hardware with different synaptic plasticity rules to emulate human brain operations. While a standard spike-timing-dependent-plasticity (STDP) rule is emulated in many SNN hardware, the various STDP rules found in the biological brain have rarely been implemented in hardware. This study proposes a CMOS-memristor hybrid synapse circuit for the hardware implementation of a Ca ion-based plasticity model to emulate the various STDP curves. The memristor was adopted as a memory device in the CMOS synapse circuit because memristors have been identified as promising candidates for analog non-volatile memory devices in terms of energy efficiency and scalability. The circuit design was divided into four sub-blocks based on biological behavior, exploiting the non-volatile and analog state properties of memristors. The circuit was designed to vary weights using an H-bridge circuit structure and PWM modulation. The various STDP curves have been emulated in one CMOS-memristor hybrid circuit, and furthermore a simple neural network operation was demonstrated for associative learning such as Pavlovian conditioning. The proposed circuit is expected to facilitate large-scale operations for neuromorphic computing through its scale-up.
Collapse
Affiliation(s)
- Jae Gwang Lim
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- School of Electrical Engineering, Korea University, Seoul, 02841, South Korea
| | - Sung-Jae Park
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Micro/Nano Systems, Korea University, Seoul, 02841, South Korea
| | - Sang Min Lee
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Micro/Nano Systems, Korea University, Seoul, 02841, South Korea
| | - Yeonjoo Jeong
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jaewook Kim
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Suyoun Lee
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jongkil Park
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Gyu Weon Hwang
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Kyeong-Seok Lee
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Seongsik Park
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hyun Jae Jang
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Byeong-Kwon Ju
- School of Electrical Engineering, Korea University, Seoul, 02841, South Korea.
- Department of Micro/Nano Systems, Korea University, Seoul, 02841, South Korea.
| | - Jong Keuk Park
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| | - Inho Kim
- Center for Semiconductor Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| |
Collapse
|
2
|
A Spike Neural Network Model for Lateral Suppression of Spike-Timing-Dependent Plasticity with Adaptive Threshold. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aiming at the practical constraints of high resource occupancy and complex calculations in the existing Spike Neural Network (SNN) image classification model, in order to seek a more lightweight and efficient machine vision solution, this paper proposes an adaptive threshold Spike Neural Network (SNN) model of lateral inhibition of Spike-Timing-Dependent Plasticity (STDP). The conversion from grayscale image to pulse sequence is completed by convolution normalization and first pulse time coding. The network self-classification is realized by combining the classical Spike-Timing-Dependent Plasticity algorithm (STDP) and lateral suppression algorithm. The occurrence of overfitting is effectively suppressed by introducing an adaptive threshold. The experimental results on the MNIST data set show that compared with the traditional SNN classification model, the complexity of the weight update algorithm is reduced from O(n2) to O(1), and the accuracy rate can still remain stable at about 96%. The provided model is conducive to the migration of software algorithms to the bottom layer of the hardware platform, and can provide a reference for the realization of edge computing solutions for small intelligent hardware terminals with high efficiency and low power consumption.
Collapse
|
3
|
Stochastic configuration networks for self-blast state recognition of glass insulators with adaptive depth and multi-scale representation. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Auge D, Hille J, Mueller E, Knoll A. A Survey of Encoding Techniques for Signal Processing in Spiking Neural Networks. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10562-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractBiologically inspired spiking neural networks are increasingly popular in the field of artificial intelligence due to their ability to solve complex problems while being power efficient. They do so by leveraging the timing of discrete spikes as main information carrier. Though, industrial applications are still lacking, partially because the question of how to encode incoming data into discrete spike events cannot be uniformly answered. In this paper, we summarise the signal encoding schemes presented in the literature and propose a uniform nomenclature to prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical foundations as well as applications of the encoding schemes. This work provides a foundation in spiking signal encoding and gives an overview over different application-oriented implementations which utilise the schemes.
Collapse
|
5
|
Doborjeh M, Doborjeh Z, Kasabov N, Barati M, Wang GY. Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network. SENSORS 2021; 21:s21144900. [PMID: 34300640 PMCID: PMC8309947 DOI: 10.3390/s21144900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
The paper proposes a new method for deep learning and knowledge discovery in a brain-inspired Spiking Neural Networks (SNN) architecture that enhances the model’s explainability while learning from streaming spatiotemporal brain data (STBD) in an incremental and on-line mode of operation. This led to the extraction of spatiotemporal rules from SNN models that explain why a certain decision (output prediction) was made by the model. During the learning process, the SNN created dynamic neural clusters, captured as polygons, which evolved in time and continuously changed their size and shape. The dynamic patterns of the clusters were quantitatively analyzed to identify the important STBD features that correspond to the most activated brain regions. We studied the trend of dynamically created clusters and their spike-driven events that occur together in specific space and time. The research contributes to: (1) enhanced interpretability of SNN learning behavior through dynamic neural clustering; (2) feature selection and enhanced accuracy of classification; (3) spatiotemporal rules to support model explainability; and (4) a better understanding of the dynamics in STBD in terms of feature interaction. The clustering method was applied to a case study of Electroencephalogram (EEG) data, recorded from a healthy control group (n = 21) and opiate use (n = 18) subjects while they were performing a cognitive task. The SNN models of EEG demonstrated different trends of dynamic clusters across the groups. This suggested to select a group of marker EEG features and resulted in an improved accuracy of EEG classification to 92%, when compared with all-feature classification. During learning of EEG data, the areas of neurons in the SNN model that form adjacent clusters (corresponding to neighboring EEG channels) were detected as fuzzy boundaries that explain overlapping activity of brain regions for each group of subjects.
Collapse
Affiliation(s)
- Maryam Doborjeh
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (M.B.)
- Correspondence:
| | - Zohreh Doborjeh
- Department of Audiology, Faculty of Medical and Health Sciences, School of Population Health, The University of Auckland, Auckland 1023, New Zealand;
| | - Nikola Kasabov
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (M.B.)
- George Moore Chair of Data Analytics, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry/Londonderry BT48 7JL, UK
| | - Molood Barati
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (M.B.)
| | - Grace Y. Wang
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand;
| |
Collapse
|
6
|
NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.12.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Strohmer B, Stagsted RK, Manoonpong P, Larsen LB. Integrating Non-spiking Interneurons in Spiking Neural Networks. Front Neurosci 2021; 15:633945. [PMID: 33746701 PMCID: PMC7973219 DOI: 10.3389/fnins.2021.633945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Researchers working with neural networks have historically focused on either non-spiking neurons tractable for running on computers or more biologically plausible spiking neurons typically requiring special hardware. However, in nature homogeneous networks of neurons do not exist. Instead, spiking and non-spiking neurons cooperate, each bringing a different set of advantages. A well-researched biological example of such a mixed network is a sensorimotor pathway, responsible for mapping sensory inputs to behavioral changes. This type of pathway is also well-researched in robotics where it is applied to achieve closed-loop operation of legged robots by adapting amplitude, frequency, and phase of the motor output. In this paper we investigate how spiking and non-spiking neurons can be combined to create a sensorimotor neuron pathway capable of shaping network output based on analog input. We propose sub-threshold operation of an existing spiking neuron model to create a non-spiking neuron able to interpret analog information and communicate with spiking neurons. The validity of this methodology is confirmed through a simulation of a closed-loop amplitude regulating network inspired by the internal feedback loops found in insects for posturing. Additionally, we show that non-spiking neurons can effectively manipulate post-synaptic spiking neurons in an event-based architecture. The ability to work with mixed networks provides an opportunity for researchers to investigate new network architectures for adaptive controllers, potentially improving locomotion strategies of legged robots.
Collapse
Affiliation(s)
- Beck Strohmer
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Rasmus Karnøe Stagsted
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Poramate Manoonpong
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Leon Bonde Larsen
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Tan C, Šarlija M, Kasabov N. Spiking Neural Networks: Background, Recent Development and the NeuCube Architecture. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10322-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Zhang Q, Li W, Li H, Wang J. Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.02.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Liang Y, chen C, Wang Y, Lei K, Yang M, Lyu Z. Reachability preserving compression for dynamic graph. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Petro B, Kasabov N, Kiss RM. Selection and Optimization of Temporal Spike Encoding Methods for Spiking Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:358-370. [PMID: 30990446 DOI: 10.1109/tnnls.2019.2906158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spiking neural networks (SNNs) receive trains of spiking events as inputs. In order to design efficient SNN systems, real-valued signals must be optimally encoded into spike trains so that the task-relevant information is retained. This paper provides a systematic quantitative and qualitative analysis and guidelines for optimal temporal encoding. It proposes a methodology of a three-step encoding workflow: method selection by signal characteristics, parameter optimization by error metrics between original and reconstructed signals, and validation by comparison of the original signal and the encoded spike train. Four encoding methods are analyzed: one stimulus estimation [Ben's Spiker algorithm (BSA)] and three temporal contrast [threshold-based, step-forward (SW), and moving-window (MW)] encodings. A short theoretical analysis is provided, and the extended quantitative analysis is carried out applying four types of test signals: step-wise signal, smooth (sinusoid) signal with added noise, trended smooth signal, and event-like smooth signal. Various time-domain and frequency spectrum properties are explored, and a comparison is provided. BSA, the only method providing unipolar spikes, was shown to be ineffective for step-wise signals, but it can follow smoothly changing signals if filter coefficients are scaled appropriately. Producing bipolar (positive and negative) spike trains, SW encoding was most effective for all types of signals as it proved to be robust and easy to optimize. Signal-to-noise ratio (SNR) can be recommended as the error metric for parameter optimization. Currently, only a visual check is available for final validation.
Collapse
|
12
|
Chen ZH, You ZH, Li LP, Wang YB, Qiu Y, Hu PW. Identification of self-interacting proteins by integrating random projection classifier and finite impulse response filter. BMC Genomics 2019; 20:928. [PMID: 31881833 PMCID: PMC6933882 DOI: 10.1186/s12864-019-6301-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Identification of protein-protein interactions (PPIs) is crucial for understanding biological processes and investigating the cellular functions of genes. Self-interacting proteins (SIPs) are those in which more than two identical proteins can interact with each other and they are the specific type of PPIs. More and more researchers draw attention to the SIPs detection, and several prediction model have been proposed, but there are still some problems. Hence, there is an urgent need to explore a efficient computational model for SIPs prediction. Results In this study, we developed an effective model to predict SIPs, called RP-FIRF, which merges the Random Projection (RP) classifier and Finite Impulse Response Filter (FIRF) together. More specifically, each protein sequence was firstly transformed into the Position Specific Scoring Matrix (PSSM) by exploiting Position Specific Iterated BLAST (PSI-BLAST). Then, to effectively extract the discriminary SIPs feature to improve the performance of SIPs prediction, a FIRF method was used on PSSM. The R’classifier was proposed to execute the classification and predict novel SIPs. We evaluated the performance of the proposed RP-FIRF model and compared it with the state-of-the-art support vector machine (SVM) on human and yeast datasets, respectively. The proposed model can achieve high average accuracies of 97.89 and 97.35% using five-fold cross-validation. To further evaluate the high performance of the proposed method, we also compared it with other six exiting methods, the experimental results demonstrated that the capacity of our model surpass that of the other previous approaches. Conclusion Experimental results show that self-interacting proteins are accurately well-predicted by the proposed model on human and yeast datasets, respectively. It fully show that the proposed model can predict the SIPs effectively and sufficiently. Thus, RP-FIRF model is an automatic decision support method which should provide useful insights into the recognition of SIPs.
Collapse
Affiliation(s)
- Zhan-Heng Chen
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhu-Hong You
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li-Ping Li
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yan-Bin Wang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yu Qiu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
13
|
Doborjeh M, Kasabov N, Doborjeh Z, Enayatollahi R, Tu E, Gandomi AH. Personalised modelling with spiking neural networks integrating temporal and static information. Neural Netw 2019; 119:162-177. [PMID: 31446235 DOI: 10.1016/j.neunet.2019.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
This paper proposes a new personalised prognostic/diagnostic system that supports classification, prediction and pattern recognition when both static and dynamic/spatiotemporal features are presented in a dataset. The system is based on a proposed clustering method (named d2WKNN) for optimal selection of neighbouring samples to an individual with respect to the integration of both static (vector-based) and temporal individual data. The most relevant samples to an individual are selected to train a Personalised Spiking Neural Network (PSNN) that learns from sets of streaming data to capture the space and time association patterns. The generated time-dependant patterns resulted in a higher accuracy of classification/prediction (80% to 93%) when compared with global modelling and conventional methods. In addition, the PSNN models can support interpretability by creating personalised profiling of an individual. This contributes to a better understanding of the interactions between features. Therefore, an end-user can comprehend what interactions in the model have led to a certain decision (outcome). The proposed PSNN model is an analytical tool, applicable to several real-life health applications, where different data domains describe a person's health condition. The system was applied to two case studies: (1) classification of spatiotemporal neuroimaging data for the investigation of individual response to treatment and (2) prediction of risk of stroke with respect to temporal environmental data. For both datasets, besides the temporal data, static health data were also available. The hyper-parameters of the proposed system, including the PSNN models and the d2WKNN clustering parameters, are optimised for each individual.
Collapse
Affiliation(s)
- Maryam Doborjeh
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand; Computer Science Department, Auckland University of Technology, New Zealand.
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand; Computer Science Department, Auckland University of Technology, New Zealand
| | - Zohreh Doborjeh
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Reza Enayatollahi
- BioDesign Lab, School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Enmei Tu
- School of Electronics, Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Amir H Gandomi
- Faculty of Engineering & Information Technology, University of Technology, Sydney, Ultimo, NSW 2007, Australia; School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
14
|
Sengupta N, McNabb CB, Kasabov N, Russell BR. Integrating Space, Time, and Orientation in Spiking Neural Networks: A Case Study on Multimodal Brain Data Modeling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5249-5263. [PMID: 29994642 DOI: 10.1109/tnnls.2018.2796023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent progress in a noninvasive brain data sampling technology has facilitated simultaneous sampling of multiple modalities of brain data, such as functional magnetic resonance imaging, electroencephalography, diffusion tensor imaging, and so on. In spite of the potential benefits from integrating predictive modeling of multiple modality brain data, this area of research remains mostly unexplored due to a lack of methodological advancements. The difficulty in fusing multiple modalities of brain data within a single model lies in the heterogeneous temporal and spatial characteristics of the data sources. Recent advances in spiking neural network systems, however, provide the flexibility to incorporate multidimensional information within the model. This paper proposes a novel, unsupervised learning algorithm for fusing temporal, spatial, and orientation information in a spiking neural network architecture that could potentially be used to understand and perform predictive modeling using multimodal data. The proposed algorithm is evaluated both qualitatively and quantitatively using synthetically generated data to characterize its behavior and its ability to utilize spatial, temporal, and orientation information within the model. This leads to improved pattern recognition capabilities and performance along with robust interpretability of the brain data. Furthermore, a case study is presented, which aims to build a computational model that discriminates between people with schizophrenia who respond or do not respond to monotherapy with the antipsychotic clozapine.
Collapse
|