Fallahdizcheh A, Laroia S, Wang C. Sequential Active Contour Based on Morphological-Driven Thresholding for Ultrasound Image Segmentation of Ascites.
IEEE J Biomed Health Inform 2023;
27:4305-4316. [PMID:
37335794 DOI:
10.1109/jbhi.2023.3286869]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Paracentesis is a high-demanding and routine operation, which has great potentials and benefits if semi-autonomous procedures can be developed. One of the most important techniques that facilitate semi-autonomous paracentesis is to segment the ascites from ultrasound images accurately and efficiently. The ascites, however, is usually with significantly different shapes and noise among different patients, and its shape/size changes dynamically during the paracentesis. This makes most of existing image segmentation methods either time consuming or inaccurate for segmenting ascites from its background. In this article, we propose a two-stage active contour method to facilitate accurate and efficient segmentation of ascites. First, a morphological-driven thresholding method is developed to locate the initial contour of the ascites automatically. Then, the identified initial contour is fed into a novel sequential active contour algorithm to segment the ascites from background accurately. The proposed method is tested and compared with state-of-the-art active contour methods on over 100 real ultrasound images of ascites, and the results show the superiority of our method in both accuracy and time efficiency.
Collapse