Xu W, Liu X, Wang H, Zhou Y. Event-Triggered Adaptive NN Tracking Control for MIMO Nonlinear Discrete-Time Systems.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;
33:7414-7424. [PMID:
34129504 DOI:
10.1109/tnnls.2021.3084965]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article concentrates on the design of a novel event-based adaptive neural network (NN) control algorithm for a class of multiple-input-multiple-output (MIMO) nonlinear discrete-time systems. A controller is designed through a novel recursive design procedure, under which the dependence on virtual controls is avoided and only system states are needed. The numbers of the event-triggered conditions and parameters updated online in each subsystem reduce to only one, which largely reduces the computation burden and simplifies the algorithm realization. In this case, radial basis function NNs (RBFNNs) are employed to approximate the control input. The semiglobal uniformly ultimate boundedness (SGUUB) of all the signals in the closed-loop system is guaranteed by the Lyapunov difference approach. The effectiveness of the proposed algorithm is validated by a simulation example.
Collapse