1
|
Lv J, Shi S, Fu Z, Wang Y, Duan C, Hu S, Wu H, Zhang B, Li Y, Song Q. Exploring the inflammation-related mechanisms of Lingguizhugan decoction on right ventricular remodeling secondary to pulmonary arterial hypertension based on integrated strategy using UPLC-HRMS, systems biology approach, and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155879. [PMID: 39032277 DOI: 10.1016/j.phymed.2024.155879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/27/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) and the consequent right heart dysfunction persist with high morbidity and mortality, and the mechanisms and pharmacologic interventions for chronic right-sided heart failure (RHF) have not been adequately investigated. Research has shown that prolonged inflammation is critical in precipitating the progression of PAH-associated right heart pathology. Some research demonstrated that Lingguizhugan decoction (LGZGD), as a classical Chinese medicine formula, had beneficial effects in alleviating PAH and RHF, while its underlying mechanisms involved are not fully elucidated. PURPOSE Based on that, this study aims to investigate the effects and underlying mechanisms of LGZGD on PAH-induced RHF. STUDY DESIGN In this study, we identified the serum constituents and deciphered the potential anti-inflammatory mechanism and crucial components of LGZGD using combined approaches of UPLC-HRMS, transcriptomic analysis, and molecular docking techniques. Finally, we used in vivo experiments to verify the expression of key targets in the monocrotaline (MCT)-induced RHF model and the intervene effect of LGZGD. RESULTS Integrated strategies based on UPLC-HRMS and systems biology approach combined with in vivo experimental validation showed that LGZGD could improve right heart fibrosis and dysfunction via regulating diverse inflammatory signaling pathways and the activity of immune cells, including chemokine family CCL2, CXCR4, leukocyte integrins family ITGAL, ITGB2, and M2 macrophage infiltration, as well as lipid peroxidation-associated HMOX1, NOX4, and 4-HNE. CONCLUSION The present research demonstrated for the first time that LGZGD might improve PAH-induced RHF through multiple anti-inflammatory signaling and inhibition of ferroptosis, which could provide certain directions for future research in related fields.
Collapse
Affiliation(s)
- Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yajiao Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
3
|
Yin G, Sun Z, Wang Z, Xia Y, Cheng L, Qin G, Aschalew ND, Liu H, Zhang X, Wu Q, Zhang W, Zhao W, Wang T, Zhen Y. Mechanistic insights into inositol-mediated rumen function promotion and metabolic alteration using in vitro and in vivo models. Front Vet Sci 2024; 11:1359234. [PMID: 38435365 PMCID: PMC10904589 DOI: 10.3389/fvets.2024.1359234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Inositol is a bioactive factor that is widely found in nature; however, there are few studies on its use in ruminant nutrition. This study investigated the effects of different inositol doses and fermentation times on rumen fermentation and microbial diversity, as well as the levels of rumen and blood metabolites in sheep. Rumen fermentation parameters, microbial diversity, and metabolites after different inositol doses were determined in vitro. According to the in vitro results, six small-tailed Han sheep fitted with permanent rumen fistulas were used in a 3 × 3 Latin square feeding experiment where inositol was injected into the rumen twice a day and rumen fluid and blood samples were collected. The in vitro results showed that inositol could increase in vitro dry matter digestibility, in vitro crude protein digestibility, NH3-N, acetic acid, propionic acid, and rumen microbial diversity and affect rumen metabolic pathways (p < 0.05). The feeding experiment results showed that inositol increased the blood concentration of high-density lipoprotein and IgG, IgM, and IL-4 levels. The rumen microbial composition was significantly affected (p < 0.05). Differential metabolites in the rumen were mainly involved in ABC transporters, biotin metabolism, and phenylalanine metabolism, whereas those in the blood were mainly involved in arginine biosynthesis and glutathione and tyrosine metabolism. In conclusion, inositol improves rumen function, affects rumen microorganisms and rumen and blood metabolites and may reduce inflammation, improving animal health.
Collapse
Affiliation(s)
- Guopei Yin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhanqing Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuanhong Xia
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Long Cheng
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Natnael D. Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Agriculture and Environmental Science, Dilla University, Dila, Ethiopia
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qilu Wu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Weigang Zhang
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Wei Zhao
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| |
Collapse
|
4
|
Chiyo N, Seki H, Kanamoto T, Ueda H, Kojoma M, Muranaka T. Glycyrrhizin Production in Licorice Hairy Roots Based on Metabolic Redirection of Triterpenoid Biosynthetic Pathway by Genome Editing. PLANT & CELL PHYSIOLOGY 2024; 65:185-198. [PMID: 38153756 PMCID: PMC10873519 DOI: 10.1093/pcp/pcad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Glycyrrhizin, a type of the triterpenoid saponin, is a major active ingredient contained in the roots of the medicinal plant licorice (Glycyrrhiza uralensis, G. glabra and G. inflata), and is used worldwide in diverse applications, such as herbal medicines and sweeteners. The growing demand for licorice threatens wild resources and therefore a sustainable method of supplying glycyrrhizin is required. With the goal of establishing an alternative glycyrrhizin supply method not dependent on wild plants, we attempted to produce glycyrrhizin using hairy root culture. We tried to promote glycyrrhizin production by blocking competing pathways using CRISPR/Cas9-based gene editing. CYP93E3 CYP72A566 double-knockout (KO) and CYP93E3 CYP72A566 CYP716A179 LUS1 quadruple-KO variants were generated, and a substantial amount of glycyrrhizin accumulation was confirmed in both types of hairy root. Furthermore, we evaluated the potential for promoting further glycyrrhizin production by simultaneous CYP93E3 CYP72A566 double-KO and CYP88D6-overexpression. This strategy resulted in a 3-fold increase (∼1.4 mg/g) in glycyrrhizin accumulation in double-KO/CYP88D6-overexpression hairy roots, on average, compared with that of double-KO hairy roots. These findings demonstrate that the combination of blocking competing pathways and overexpression of the biosynthetic gene is important for enhancing glycyrrhizin production in G. uralensis hairy roots. Our findings provide the foundation for sustainable glycyrrhizin production using hairy root culture. Given the widespread use of genome editing technology in hairy roots, this combined with gene knockout and overexpression could be widely applied to the production of valuable substances contained in various plant roots.
Collapse
Affiliation(s)
- Naoki Chiyo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Institution for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
| | - Takuya Kanamoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
| | - Hiroshi Ueda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
| | - Mareshige Kojoma
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu-cho, Ishikari-gun, 061-0293 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Institution for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
| |
Collapse
|
5
|
Zhang R, Asikaer A, Chen Q, Wang F, Lan J, Liu Y, Hu L, Zhao H, Duan H. Network pharmacology and in vitro experimental verification unveil glycyrrhizin from glycyrrhiza glabra alleviates acute pancreatitis via modulation of MAPK and STAT3 signaling pathways. BMC Complement Med Ther 2024; 24:58. [PMID: 38280993 PMCID: PMC10821312 DOI: 10.1186/s12906-024-04372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Acute pancreatitis (AP) is a severe gastrointestinal inflammatory disease with increasing mortality and morbidity. Glycyrrhiza glabra, commonly known as Liquorice, is a widely used plant containing bioactive compounds like Glycyrrhizin, which possesses diverse medicinal properties such as anti-inflammatory, antioxidant, antiviral, and anticancer activities. The objective of this study is to investigate the active components, relevant targets, and underlying mechanisms of the traditional Chinese medicine Glycyrrhiza glabra in the treatment of AP. Utilizing various computational biology methods, we explored the potential targets and molecular mechanisms through Glycyrrhizin supplementation. Computational results indicated that Glycyrrhizin shows promising pharmacological potential, particularly with mitogen-activated protein kinase 3 (MAPK3) protein (degree: 70), forming stable complexes with Glycyrrhizin through ionic and hydrogen bonding interactions, with a binding free energy (ΔGbind) of -33.01 ± 0.08 kcal/mol. Through in vitro experiments, we validated that Glycyrrhizin improves primary pancreatic acinar cell injury by inhibiting the MAPK/STAT3/AKT signaling pathway. Overall, MAPK3 emerges as a reliable target for Glycyrrhizin's therapeutic effects in AP treatment. This study provides novel insights into the active components and potential targets and molecular mechanisms of natural products.
Collapse
Affiliation(s)
- Rui Zhang
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR China
| | - Qi Chen
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Fang Wang
- College of Stomotology, Zunyi Medical University, Zunyi, 563000, China
| | - Junjie Lan
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yang Liu
- Department of Hepatobiliary Surgery II, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Linfang Hu
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Huaye Zhao
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR China.
| |
Collapse
|
6
|
Zhou Y, Zhang A, Fang C, Yuan L, Shao A, Xu Y, Zhou D. Oxidative stress in pituitary neuroendocrine tumors: Affecting the tumor microenvironment and becoming a new target for pituitary neuroendocrine tumor therapy. CNS Neurosci Ther 2023; 29:2744-2759. [PMID: 37341156 PMCID: PMC10493678 DOI: 10.1111/cns.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Pituitary adenomas (PAs), or pituitary neuroendocrine tumors (PitNETs), are commonly found in the anterior pituitary gland. Although the majority of PitNETs are benign and stable, several tumors have malignant characteristics. The tumor microenvironment (TME) plays an important role in the process of tumorigenesis and is composed of several types of cells. Various cells in the TME are significantly affected by oxidative stress. It has been reported that immunotherapeutic strategies have good effects in several cancers. However, the clinical potential of immunotherapies in PitNETs has not yet been fully discussed. Oxidative stress can regulate PitNET cells and immune cells in the TME, thus affecting the immune status of the TME of PitNETs. Therefore, modulation of oxidative stress-regulated immune cells using a combination of several agents and the immune system to suppress PitNETs is a promising therapeutic direction. In this review, we systematically analyzed the oxidative stress process within PitNET cells and various immune cells to elucidate the potential value of immunotherapy.
Collapse
Affiliation(s)
- Yuhang Zhou
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yuan
- School of Public Health, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Danyang Zhou
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
7
|
Hill EB, Baxter BA, Pfluger B, Slaughter CK, Beale M, Smith HV, Stromberg SS, Tipton M, Ibrahim H, Rao S, Leach H, Ryan EP. Plasma, urine, and stool metabolites in response to dietary rice bran and navy bean supplementation in adults at high-risk for colorectal cancer. FRONTIERS IN GASTROENTEROLOGY (LAUSANNE, SWITZERLAND) 2023; 2:1087056. [PMID: 38469373 PMCID: PMC10927265 DOI: 10.3389/fgstr.2023.1087056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Introduction Dietary intake of whole grains and legumes and adequate physical activity (PA) have been associated with reduced colorectal cancer (CRC) risk. A single-blinded, two-arm, randomized, placebo-controlled pilot trial was implemented to evaluate the impact of a 12-week dietary intervention of rice bran + navy bean supplementation and PA education on metabolite profiles and the gut microbiome among individuals at high risk of CRC. Methods Adults (n=20) were randomized 1:1 to dietary intervention or control. All participants received PA education at baseline. Sixteen study foods were prepared with either heat-stabilized rice bran + navy bean powder or Fibersol®-2 as a placebo. Intervention participants consumed 30 g rice bran + 30 g navy bean powder daily; those in the control group consumed 10 g placebo daily. Non-targeted metabolite profiling was performed by UPLC-MS/MS to evaluate plasma, urine, and stool at 0, 6, and 12 weeks. Stool was also analyzed for primary and secondary bile acids (BAs) and short chain fatty acids (SCFAs) by UPLC-MS/MS and microbial community structure via 16S amplicon sequencing. Two-way ANOVA was used to compare differences between groups for metabolites, and mixed models were used to compare differences between groups for BAs, SCFAs, and alpha and beta diversity measures of microbial community structure. Results Across biological matrices, the intervention resulted in changes to several amino acid and lipid metabolites, compared to control. There was a 2.33-fold difference in plasma (p<0.001) and a 3.33-fold difference in urine (p=0.008) for the amino acid S-methylcysteine at 12 weeks. Fold-differences to 4-methoxyphenol sulfate in plasma and urine after 6 and 12 weeks (p<0.001) was a novel result from this combined rice bran and navy bean intervention in people. A 2.98-fold difference in plasma (p=0.002) and a 17.74-fold difference in stool (p=0.026) was observed for the lipid octadecenedioylcarnitine at 12 weeks. For stool BAs, 3-oxocholic acid was increased at 12 weeks compared to control within a subset of individuals (mean difference 16.2 ug/uL, p=0.022). No significant differences were observed between groups for stool SCFAs or microbial community structure. Discussion Dietary intake of rice bran + navy beans demonstrates beneficial modulation of host and gut microbial metabolism and represents a practical and affordable means of increasing adherence to national guidelines for CRC control and prevention in a high-risk population.
Collapse
Affiliation(s)
- Emily B. Hill
- Department of Pediatrics, Section of Nutrition, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Bridget A. Baxter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brigitte Pfluger
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Caroline K. Slaughter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Melanie Beale
- Department of Health and Exercise Science, College of Health & Human Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hillary V. Smith
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, United States
| | - Sophia S. Stromberg
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Madison Tipton
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hend Ibrahim
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sangeeta Rao
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Heather Leach
- Department of Health and Exercise Science, College of Health & Human Sciences, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Luo Y, Jiang Y, Chen L, Li C, Wang Y. Applications of protein engineering in the microbial synthesis of plant triterpenoids. Synth Syst Biotechnol 2022; 8:20-32. [PMID: 36381964 PMCID: PMC9634032 DOI: 10.1016/j.synbio.2022.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Triterpenoids are a class of natural products widely used in fields related to medicine and health due to their biological activities such as hepatoprotection, anti-inflammation, anti-viral, and anti-tumor. With the advancement in biotechnology, microorganisms have been used as cell factories to produce diverse natural products. Despite the significant progress that has been made in the construction of microbial cell factories for the heterogeneous biosynthesis of triterpenoids, the industrial production of triterpenoids employing microorganisms has been stymied due to the shortage of efficient enzymes as well as the low expression and low catalytic activity of heterologous proteins in microbes. Protein engineering has been demonstrated as an effective way for improving the specificity, catalytic activity, and stability of the enzyme, which can be employed to overcome these challenges. This review summarizes the current progress in the studies of Oxidosqualene cyclases (OSCs), cytochrome P450s (P450s), and UDP-glycosyltransferases (UGTs), the key enzymes in the triterpenoids synthetic pathway. The main obstacles restricting the efficient catalysis of these key enzymes are analyzed, the applications of protein engineering for the three key enzymes in the microbial synthesis of triterpenoids are systematically reviewed, and the challenges and prospects of protein engineering are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yaozhu Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Corresponding author.
| |
Collapse
|
9
|
Glycyrrhetinic acid modified chlorambucil prodrug for hepatocellular carcinoma treatment based on DNA replication and tumor microenvironment. Colloids Surf B Biointerfaces 2022; 220:112864. [DOI: 10.1016/j.colsurfb.2022.112864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
10
|
Kato K, Horiba A, Hayashi H, Mizukami H, Terasaka K. Characterization of Triterpene Saponin Glycyrrhizin Transport by Glycyrrhiza glabra. PLANTS 2022; 11:plants11091250. [PMID: 35567251 PMCID: PMC9102456 DOI: 10.3390/plants11091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
Glycyrrhizin (GL), a triterpene compound produced by Glycyrrhiza species, is a crucial pharmacologically active component of crude drugs. In contrast to the biosynthesis of GL in plants, little is known about GL transport and accumulation in plants. The transport mechanism of GL was characterized using cultured cells of Glycyrrhiza glabra. Cultured cells of G. glabra efficiently incorporated exogenously supplied GL. Proton pump inhibitors, such as probenecid and niflumic acid, as well as a protonophore (carbonylcyanide m-chlorophenylhydrazone), markedly inhibited GL uptake by cultured cells, whereas vanadate exhibited a moderate inhibition. Furthermore, GL transport by G. glabra tonoplast vesicles is dependent not on a H+-electrochemical gradient but MgATP and is markedly inhibited by vanadate. These results suggest that GL uptake by cultured cells is mediated by a H+-symporter in the plasma membrane and an ATP-binding cassette transporter, which has high specificity for the aglycone structure of GL on the tonoplast.
Collapse
Affiliation(s)
- Kakuki Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya 467-8603, Japan; (K.K.); (A.H.); (H.M.)
| | - Asako Horiba
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya 467-8603, Japan; (K.K.); (A.H.); (H.M.)
| | - Hiroaki Hayashi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
| | - Hajime Mizukami
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya 467-8603, Japan; (K.K.); (A.H.); (H.M.)
| | - Kazuyoshi Terasaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya 467-8603, Japan; (K.K.); (A.H.); (H.M.)
- Correspondence:
| |
Collapse
|
11
|
Zhang T, Sun Y, Ma Z, Zhang J, Lv B, Li C. Developing iterative and quantified transgenic manipulations of non-conventional filamentous fungus Talaromyces pinophilus Li-93. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Huang Y, Nan L, Xiao C, Dong J, Li K, Cheng J, Ji Q, Wei Q, Bao G, Liu Y. Outer Membrane Vesicles Coating Nano-Glycyrrhizic Acid Confers Protection Against Borderella bronchiseptica Through Th1/Th2/Th17 Responses. Int J Nanomedicine 2022; 17:647-663. [PMID: 35177904 PMCID: PMC8846627 DOI: 10.2147/ijn.s350846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Outer membrane vesicles (OMVs) are spherical nano-sized proteolipids secreted by numerous pathogenic Gram-negative bacteria. Due to the immunostimulatory properties and protective efficacy, OMVs have received increasing attention as a candidate for the vaccine to prevent and treat bacterial infections. However, the immune response remains elusive due to the low structural stability and poor size homogeneity of the vesicles. In this study, OMVs were used to coat self-assembled glycyrrhizic acid nanoparticles (GANs) and obtain a stable OMV vaccine. The immunoprotective effects and anti-infection efficacy were evaluated in vivo and in vitro. Methods The OMVs were prepared by ultrafiltration method and fused with GAN through mechanical extrusion. The characteristics, including morphology, hydrodynamic size, zeta potential, and stability were evaluated. The in vitro immunological function of GAN-OMV on the macrophages and in vivo immune efficacy and anti-infection effect were examined and compared. Results The results showed that the GAN-OMV were homogenous with a size of 130 nm and a stable core-shell structure. Micropinocytosis-dependent and clathrin-mediated endocytotic pathways effectively internalized the GAN-OMV into the macrophages and promoted cell proliferation, cytokine secretion, and M1 polarization. Furthermore, subcutaneous GAN-OMV vaccination contributed to significantly higher Borderella bronchiseptica (Bb)-specific antibody production and lymphocyte proliferation. The splenic lymphocytes of mice immunized with GAN-OMVs displayed a higher ratio of CD4+/CD8+ T cells and CD19+ B cells and produced significantly higher levels of Th1/Th2/Th17 cytokines. GAN-OMV also effectively prevented Bb reinfection. Conclusion In this study, GAN-OMV was developed successfully to stimulate Th1/Th2/Th17 immune responses against Bb and provide a promising strategy for novel vaccine development against the microbial pathogen.
Collapse
Affiliation(s)
- Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Li Nan
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Jvfen Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
- Correspondence: Guolian Bao; Yan Liu, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China, Email ;
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| |
Collapse
|
13
|
Fatima A, Malick TS, Khan I, Ishaque A, Salim A. Effect of glycyrrhizic acid and 18β-glycyrrhetinic acid on the differentiation of human umbilical cord-mesenchymal stem cells into hepatocytes. World J Stem Cells 2021; 13:1580-1594. [PMID: 34786159 PMCID: PMC8567450 DOI: 10.4252/wjsc.v13.i10.1580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND End-stage liver disease is a global health complication with high prevalence and limited treatment options. Cell-based therapies using mesenchymal stem cells (MSCs) emerged as an alternative approach to support hepatic regeneration. In vitro preconditioning strategies have been employed to strengthen the regenerative and differentiation potential of MSCs towards hepatic lineage. Chemical compounds of the triterpene class; glycyrrhizic acid (GA) and 18β-glycyrrhetinic acid (GT) possess diverse therapeutic properties including hepato-protection and anti-fibrosis characteristics. They are capable of modulating several signaling pathways that are crucial in hepatic regeneration. Preconditioning with hepato-protective triterpenes may stimulate MSC fate transition towards hepatocytes.
AIM To explore the effect of GA and GT on hepatic differentiation of human umbilical cord-MSCs (hUC-MSCs).
METHODS hUC-MSCs were isolated and characterized phenotypically by flow cytometry and immunocytochemistry for the expression of MSC-associated surface molecules. Isolated cells were treated with GA, GT, and their combination for 24 h and then analyzed at three time points; day 7, 14, and 21. qRT-PCR was performed for the expression of hepatic genes. Expression of hepatic proteins was analyzed by immunocytochemistry at day 21. Periodic acid Schiff staining was performed to determine the functional ability of treated cells.
RESULTS The fusiform-shaped morphology of MSCs in the treatment groups in comparison with the untreated control, eventually progressed towards the polygonal morphology of hepatocytes with the passage of time. The temporal transcriptional profile of preconditioned MSCs displayed significant expression of hepatic genes with increasing time of differentiation. Preconditioned cells showed positive expression of hepatocyte-specific proteins. The results were further corroborated by positive periodic acid Schiff staining, indicating the presence of glycogen in their cytoplasm. Moreover, bi-nucleated cells, which is the typical feature of hepatocytes, were also seen in the preconditioned cells.
CONCLUSION Preconditioning with glycyrrhizic acid, 18β-glycyrrhetinic acid and their combination, successfully differentiates hUC-MSCs into hepatic-like cells. These MSCs may serve as a better therapeutic option for degenerative liver diseases in future.
Collapse
Affiliation(s)
- Abiha Fatima
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Tuba Shakil Malick
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Aisha Ishaque
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| |
Collapse
|
14
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
15
|
Ahmad A, Ansari MM, Kumar A, Bishnoi M, Raza SS, Khan R. Aminocellulose - grafted polycaprolactone-coated core-shell nanoparticles alleviate the severity of ulcerative colitis: a novel adjuvant therapeutic approach. Biomater Sci 2021; 9:5868-5883. [PMID: 34286723 DOI: 10.1039/d1bm00877c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory condition of colorectal regions. Existing therapies for UC face grave lacunae including off-target and other harmful side effects, extensive first-pass metabolism, rapid clearance, limited or poor drug absorption and various other limitations, resulting in lower bioavailability. These conditions demand advanced delivery strategies to inflammatory colonic conditions so that drugs can counter stomach acid, avail protective strategies at this pH and selectively deliver drugs to the colon. Therefore, this approach was undertaken to develop and characterize nanoparticles for the delivery of drugs glycyrrhizic acid as well as budesonide in UC. Biocompatible and biodegradable aminocellulose-conjugated polycaprolactone containing budesonide was covered onto gelatinous nanoparticles (NPs) loaded with GA. Nanoparticles were prepared by the solvent evaporation technique, which showed particle size of ∼230 nm, spherical shape, almost smooth morphological characters under transmission, scanning and atomic force microscopy. These NPs also improved disease activities like occult blood in the stool, length of the colon and fecal properties. The nanoparticle therapy appreciably decreased colonic mast cellular infiltration, significantly maintained mucin protection, ameliorated histological features of the colon. Furthermore, markers of inflammation such as iNOS, COX-2, IL1-β, TNF-α, NO, and MPO were also appreciably ameliorated with the therapy of dual drug-loaded nanoparticles. Overall, these results establish that dual drug-loaded core-shell NPs exhibit superior therapeutic properties over the free or naïve forms of GA and budesonide in acute colon inflammation and present advantages that may be assigned to their ability to significantly inhibit colon inflammatory conditions.
Collapse
Affiliation(s)
- Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Punjab Pin - 140306, India.
| | | | | | | | | | | |
Collapse
|
16
|
Wang B, Ye X, Zhou Y, Zhao P, Mao Y. Glycyrrhizin Attenuates Salmonella Typhimurium-Induced Tissue Injury, Inflammatory Response, and Intestinal Dysbiosis in C57BL/6 Mice. Front Vet Sci 2021; 8:648698. [PMID: 34239908 PMCID: PMC8258384 DOI: 10.3389/fvets.2021.648698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonellae are one of the most important foodborne pathogens, which threaten the health of humans and animals severely. Glycyrrhizin (GL) has been proven to exhibit anti-inflammatory and tissue-protective properties. Here, we investigated the effects of GL on tissue injury, inflammatory response, and intestinal dysbiosis in Salmonella Typhimurium-infected mice. Results showed that GL or gentamicin (GM) significantly (P < 0.05) alleviated ST-induced splenomegaly indicated by the decreased spleen index, injury of liver and jejunum indicated by the decreased hepatocytic apoptosis, and the increased jejunal villous height. GL significantly (P < 0.05) increased secretion of inflammatory cytokines (IFN-γ, IL-12p70, IL-6, and IL-10) in spleen and IL-12p40 mRNA expression in liver. Meanwhile, GL or GM pre-infection treatments significantly (P < 0.05) decreased ST-induced pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-6) expression in both spleen and liver and increased (P < 0.05) anti-inflammatory cytokine IL-10 secretion in spleen. Furthermore, GL or GM pre-infection treatment also regulates the diversities and compositions of intestinal microbiota and decreased the negative connection among the intestinal microbes in ST-infected mice. The above findings indicate that GL alleviates ST-induced splenomegaly, hepatocytic apoptosis, injury of jejunum and liver, inflammatory response of liver and spleen, and intestinal dysbacteriosis in mice.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaolin Ye
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Mao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Cristiano MC, Mancuso A, Fresta M, Torella D, De Gaetano F, Ventura CA, Paolino D. Topical Unsaturated Fatty Acid Vesicles Improve Antioxidant Activity of Ammonium Glycyrrhizinate. Pharmaceutics 2021; 13:548. [PMID: 33919824 PMCID: PMC8070842 DOI: 10.3390/pharmaceutics13040548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/06/2023] Open
Abstract
Linoleic and oleic acids are natural unsaturated fatty acids involved in several biological processes and recently studied as structural components of innovative nanovesicles. The use of natural components in the pharmaceutical field is receiving growing attention from the scientific world. The aim of this research work is to design, to perform physico-chemical characterization and in vitro/in vivo studies of unsaturated fatty acids vesicles containing ammonium glycyrrhizinate, obtaining a new topical drug delivery system. The chosen active substance is well known as an anti-inflammatory compound, but its antioxidant activity is also noteworthy. In this way, the obtained nanocarriers are totally natural vesicles and they have shown to have suitable physico-chemical features for topical administration. Moreover, the proposed nanocarriers have proven their ability to improve the in vitro percutaneous permeation and antioxidant activity of ammonium glycyrrhizinate on human keratinocytes (NCTC 2544 cells). In vivo studies, carried out on human volunteers, have demonstrated the biocompatibility of unsaturated fatty acid vesicles toward skin tissue, indicating a possible clinical application of unsaturated fatty acid vesicles for the treatment of topical diseases.
Collapse
Affiliation(s)
- Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| | - Antonia Mancuso
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (A.M.); (M.F.)
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (A.M.); (M.F.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| | - Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (C.A.V.)
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (C.A.V.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| |
Collapse
|
18
|
Elsherbini AM, Maysarah NM, El-Sherbiny M, Al-Gayyar MM, Elsherbiny NM. Glycyrrhizic acid ameliorates sodium nitrite-induced lung and salivary gland toxicity: Impact on oxidative stress, inflammation and fibrosis. Hum Exp Toxicol 2021; 40:707-721. [PMID: 33030083 DOI: 10.1177/0960327120964555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite wide application of sodium nitrite (SN) as food additive, it exhibits considerable side effects on various body organs at high dose or chronic exposure. The aim of this study was to test whether Glycyrrhizic acid (GA) could ameliorate SN-induced toxicity in lung and submandibular salivary gland (SMG). A sample size of 30 adult male albino rats was randomly allocated into 3 groups. Group 1 served as control group. Rats were treated orally with 80 mg/kg of SN in group 2 or SN preceded by (15 mg/kg) GA in group 3. Lung & SMG tissues were used for oxidative stress assessment, examination of histopathological changes, fibrosis (MTC, TGF-β and α-SMA) and inflammation (TNF-α, IL-1β and CD-68). Concurrent administration of GA ameliorated pulmonary and salivary SN-induced toxicity via restoring the antioxidant defense mechanisms with reduction of MDA levels. GA reduced the key regulators of fibrosis TGF-β and α-SMA and collagen deposition. In addition to reduction of inflammatory cytokine (TNF-α, IL-1β) and macrophages recruitments, GA amended both pulmonary and salivary morphological changes. The present study proposed GA as a promising natural herb with antioxidant, anti-inflammatory and antifibrotic effects against pulmonary and salivary SN-induced toxicity.
Collapse
Affiliation(s)
- Amira M Elsherbini
- Oral Biology, Faculty of Dentistry, 68779Mansoura University, Mansoura, Egypt
| | - Nadia M Maysarah
- Department of Pharmacology and Toxicology, College of Pharmacy, 89660Qassim University, Buraydah, Saudi Arabia
| | - Mohamed El-Sherbiny
- Anatomy Department, Faculty of Medicine, 68779Mansoura University, Mansoura, Egypt
- Anatomy Department, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Mohammed Mh Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, 68779Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, 68779Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
19
|
Effectiveness of Hepatoprotectors in the Practice of a Family Doctor. Fam Med 2021. [DOI: 10.30841/2307-5112.1.2021.231939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hepatoprotectors – drugs that form the basis of pathogenetic treatment of various liver diseases. They help restore impaired hepatocyte function, increase the resistance of liver cells to the effects of pathological factors, enhance the detoxification function of hepatocytes, have antioxidant properties. There is no generally accepted classification of hepatoprotectors today, they are divided into several groups depending on the origin: plant, animal, synthetic origin, products containing essential phospholipids, amino acids, vitamins, and other groups.
One of the well-known hepatoprotectors of plant origin is glycyrrhizin – the main active ingredient of licorice root. Licorice root (Glycyrrhiza glabra) is a drug used in medicine since ancient times, as evidenced by historical data from China, Japan, India, Greece, and Europe. Licorice root is widely used today in medicine and the food industry. Glycyrrhizin – potassium and calcium salt of glycyrrhizinic acid, has a wide range of properties. It is used mainly for the treatment of chronic liver disease. In non-alcoholic fatty liver disease, the use of glycyrrhizin helps reduce steatosis, inflammation in the liver has an antifibrotic effect. Studies on the use of glycyrrhizinic acid in hepatocellular carcinoma are actively conducted, as its antitumor properties are known. It is included in the treatment of chronic viral hepatitis. In vitro studies have shown the antiviral activity of glycyrrhizin against HIV-1, SARS-associated virus, respiratory syncytial virus, arboviruses, and its potential for coronavirus control is being discussed. Possibilities of application of glycyrrhizin and cardiovascular diseases are studied. In this article, we present a review of current literature data on glycerol, its properties, and applications in liver disease, other diseases, and our own clinical observations.
Collapse
|
20
|
Wang HQ, Ma SG, Zhang D, Li YH, Qu J, Li Y, Liu YB, Yu SS. Oxygenated pentacyclic triterpenoids from the stems and branches of Enkianthus chinensis. Bioorg Chem 2021; 111:104866. [PMID: 33866237 DOI: 10.1016/j.bioorg.2021.104866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Thirty new pentacyclic triterpenoids, including five oleanane-type (1-5), twenty-three ursane-type (9-23, 26-33) and two taraxerane-type (24 and 25), along with fourteen known triterpenoids, were isolated from the stems and branches of Enkianthus chinensis. Their structures were elucidated by extensive spectroscopic analyses, X-ray crystallographic data and electronic circular dichroism (ECD) techniques. Sixteen compounds (1-5, 9-13, 20, 22, 32, 34-36) bearing a gem-hydroxymethyl group at C-4 represent rare examples of pentacyclic triterpenoids. In the in vitro biological activity evaluation, compounds 8, 9, 12-14, 17, 24, and 44 exhibited potent hepatoprotective effects at 10 μM. Moreover, compound 25 showed latent activity against HSV-1 with an IC50 value of 6.4 μM.
Collapse
Affiliation(s)
- Hai-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yu-Huan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
21
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
22
|
Ansari MM, Ahmad A, Kumar A, Alam P, Khan TH, Jayamurugan G, Raza SS, Khan R. Aminocellulose-grafted-polycaprolactone coated gelatin nanoparticles alleviate inflammation in rheumatoid arthritis: A combinational therapeutic approach. Carbohydr Polym 2021; 258:117600. [PMID: 33593531 DOI: 10.1016/j.carbpol.2020.117600] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder and serious cause of disability. Despite considerable advances in RA management, challenges like extensive drug metabolism and rapid clearance causes poor bioavailability. Core-shell nanocarriers for co-delivery of glycyrrhizic acid (GA) and budesonide against RA were developed. GA-loaded gelatin nanoparticles (NPs) were synthesized and coated with budesonide encapsulated aminocellulose-grafted polycaprolactone (PCL-AC). GA- and budesonide-loaded PCL-AC-gel NPs had diameter of 200-225 nm. Dual drug-loaded (DDL) NPs reduced joint swelling and erythema in rats while markedly ameliorating bone erosion evidenced by radiological analysis, suppressed collagen destruction, restored synovial tissue, bone and cartilage histoarchitecture with reduced inflammatory cells infiltration. NPs also reduced various inflammatory biomarkers such as TNF-α, IL-1β, COX-2, iNOS. Results of this study suggest that dual NPs exerted superior therapeutic effects in RA compared to free drugs which may be attributed to slow and sustained drug release and NPs' ability to inhibit inflammatory mediators.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Pravej Alam
- Department of Biology, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box - 173, Alkharj, 11942, Saudi Arabia
| | | | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow, 226003, Uttar Pradesh, India; Department of Stem Cell Biology and Regenerative Medicine, Era University, Sarfarazganj, Lucknow, 226003, Uttar Pradesh, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India.
| |
Collapse
|
23
|
Richard SA. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids. Mediators Inflamm 2021; 2021:6699560. [PMID: 33505216 PMCID: PMC7808814 DOI: 10.1155/2021/6699560] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022] Open
Abstract
Licorice extract is a Chinese herbal medication most often used as a demulcent or elixir. The extract usually consists of many components but the key ingredients are glycyrrhizic (GL) and glycyrrhetinic acid (GA). GL and GA function as potent antioxidants, anti-inflammatory, antiviral, antitumor agents, and immuneregulators. GL and GA have potent activities against hepatitis A, B, and C viruses, human immunodeficiency virus type 1, vesicular stomatitis virus, herpes simplex virus, influenza A, severe acute respiratory syndrome-related coronavirus, respiratory syncytial virus, vaccinia virus, and arboviruses. Also, GA was observed to be of therapeutic valve in human enterovirus 71, which was recognized as the utmost regular virus responsible for hand, foot, and mouth disease. The anti-inflammatory mechanism of GL and GA is realized via cytokines like interferon-γ, tumor necrotizing factor-α, interleukin- (IL-) 1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, and IL-17. They also modulate anti-inflammatory mechanisms like intercellular cell adhesion molecule 1 and P-selectin, enzymes like inducible nitric oxide synthase (iNOS), and transcription factors such as nuclear factor-kappa B, signal transducer and activator of transcription- (STAT-) 3, and STAT-6. Furthermore, DCs treated with GL were capable of influencing T-cell differentiation toward Th1 subset. Moreover, GA is capable of blocking prostaglandin-E2 synthesis via blockade of cyclooxygenase- (COX-) 2 resulting in concurrent augmentation nitric oxide production through the enhancement of iNOS2 mRNA secretion in Leishmania-infected macrophages. GA is capable of inhibiting toll-like receptors as well as high-mobility group box 1.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho, Ghana
| |
Collapse
|
24
|
Chen R, Shen C, Xu Q, Liu Y, Li B, Huang C, Ma T, Meng X, Wu M, Li J. The permeability characteristics and interaction of main components from Si-Ni-San in a MDCK epithelial cell monolayer model. Xenobiotica 2020; 51:239-248. [PMID: 28745128 DOI: 10.1080/00498254.2017.1359433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Si-Ni-San (SNS) possesses extensive therapeutic effects, however, the extent to which main components are absorbed and the mechanisms involved are controversial. 2. In this study, MDCK cell model was used to determine the permeability characteristics and interaction between the major components of Si-Ni-San, including saikosaponin a, paeoniflorin, naringin and glycyrrhizic acid. 3. The transport of the major components was concentration-dependent in both directions. Moreover, the transport of paeoniflorin, naringin and glycyrrhizic acid was significantly reduced at 4 °C or in the presence of NaN3. Additionally, the efflux of paeoniflorin and naringin were apparently reduced in the presence of P-gp inhibitor verapamil. The transport of glycyrrhizic acid was clearly inhibited by the inhibitors of MRP2, indicating that MRP2 may be involved in the transport of glycyrrhizic acid. However, the results indicated that saikosaponin a was absorbed mainly by passive diffusion. Furthermore, the combined incubation of four major components had a powerful sorbefacient effect than a single drug used alone which may be regulated by tight junctions. 4. Taken together, our study provides useful information for pharmacological applications of Si-Ni-San and offers new insights into this ancient decoction for further researches, especially in drug synergism.
Collapse
Affiliation(s)
- Ruonan Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chenlin Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yaru Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bo Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Maomao Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Chung SY, Seki H, Fujisawa Y, Shimoda Y, Hiraga S, Nomura Y, Saito K, Ishimoto M, Muranaka T. A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis. Nat Commun 2020; 11:5664. [PMID: 33199711 PMCID: PMC7669905 DOI: 10.1038/s41467-020-19399-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/06/2020] [Indexed: 12/01/2022] Open
Abstract
Triterpenoid saponins are specialised metabolites distributed widely in the plant kingdom that consist of one or more sugar moieties attached to triterpenoid aglycones. Despite the widely accepted view that glycosylation is catalysed by UDP-dependent glycosyltransferase (UGT), the UGT which catalyses the transfer of the conserved glucuronic acid moiety at the C-3 position of glycyrrhizin and various soyasaponins has not been determined. Here, we report that a cellulose synthase superfamily-derived glycosyltransferase (CSyGT) catalyses 3-O-glucuronosylation of triterpenoid aglycones. Gene co-expression analyses of three legume species (Glycyrrhiza uralensis, Glycine max, and Lotus japonicus) reveal the involvement of CSyGTs in saponin biosynthesis, and we characterise CSyGTs in vivo using Saccharomyces cerevisiae. CSyGT mutants of L. japonicus do not accumulate soyasaponin, but the ectopic expression of endoplasmic reticulum membrane-localised CSyGTs in a L. japonicus mutant background successfully complement soyasaponin biosynthesis. Finally, we produced glycyrrhizin de novo in yeast, paving the way for sustainable production of high-value saponins.
Collapse
Affiliation(s)
- Soo Yeon Chung
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yukiko Fujisawa
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Susumu Hiraga
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuhta Nomura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Masao Ishimoto
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
26
|
Bachar SC, Bachar R, Jannat K, Jahan R, Rahmatullah M. Hepatoprotective natural products. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020:207-249. [DOI: 10.1016/bs.armc.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Systematic Review of Herbal Tea (a Traditional Chinese Treatment Method) in the Therapy of Chronic Simple Pharyngitis and Preliminary Exploration about Its Medication Rules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9458676. [PMID: 31662783 PMCID: PMC6791273 DOI: 10.1155/2019/9458676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022]
Abstract
Background Chronic simple pharyngitis (CSP) is a common clinical chronic respiratory inflammation with persistent and intransigent symptoms. We analyzed the clinical data to find the evidence that herbal tea, a traditional Chinese medicine treatment in China, could improve the symptoms of CSP patients in a simple way. Methods We systematically reviewed the clinical data of randomized controlled treatments from April 2019 and evaluated the results using the improved Jadad scale and the Cochrane bias risk assessment tool. RevMan 5.3 software was used for chart analysis. In addition, we used Excel to conduct frequency statistics on Chinese herbs from included articles and analyze its medication rules. Results Among the collection of 161 articles, 6 RCTs published in Chinese journals were included in this review. The methodological quality of the treatments was low, and most of them only provide diagnostic criteria. Inclusion and exclusion criteria were not specified, and none of the 6 RCTs used the blind method on the result evaluator. Furthermore, only one RCT evaluated the baseline level variance. For these reasons, we did not make a network meta-analysis. Conclusions The traditional Chinese herbs involved in herbal tea did have ingredients to alleviate CSP symptoms. However, our research showed that the current research could not draw any credible conclusions on the curative effect of herbal tea, which indicated that the overall level of TCM clinical research needs to be improved to evaluate the efficacy of herbal tea.
Collapse
|
28
|
Lefaki M, Papaevgeniou N, Tur JA, Vorgias CE, Sykiotis GP, Chondrogianni N. The dietary triterpenoid 18α-Glycyrrhetinic acid protects from MMC-induced genotoxicity through the ERK/Nrf2 pathway. Redox Biol 2019; 28:101317. [PMID: 31505326 PMCID: PMC6737304 DOI: 10.1016/j.redox.2019.101317] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023] Open
Abstract
18α-Glycyrrhetinic acid (18α-GA) is a bioactive triterpenoid that has been shown to activate the nuclear factor (erythroid-derived-2)-like 2 (Nrf2), the main transcription factor that orchestrates the cellular antioxidant response, in both cellular and organismal context. Although various beneficial properties of 18α-GA have been revealed, including its anti-oxidation and anti-aging activity, its possible protective effect against DNA damage has never been addressed. In this study, we investigated the potential beneficial properties of 18α-GA against DNA damage induced by mitomycin C (MMC) treatment. Using human primary fibroblasts exposed to MMC following pre-treatment with 18α-GA, we reveal an Nrf2-mediated protective effect against MMC-induced cell death that depends on extracellular signal-regulated kinase (ERK) signaling. In total, our results reveal an additional beneficial effect of the Nrf2 activator 18α-GA, suggesting that this important phytochemical compound is a potential candidate in preventive and/or therapeutic schemes against conditions (such as aging) or diseases that are characterized by both oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Maria Lefaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| | - Nikoletta Papaevgeniou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece; Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University of Jena, Dornburger Straße 29, 07743, Jena, Germany.
| | - Josep A Tur
- Research Group on Nutrition and Oxidative Stress, Guillem Colom Bldg, Campus, University of Balearic Islands & CIBEROBN (Physiopahotology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Constantinos E Vorgias
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15701, Athens, Greece.
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 1011, Lausanne, Switzerland.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| |
Collapse
|
29
|
Glycyrrhizin Protects the Diabetic Retina against Permeability, Neuronal, and Vascular Damage through Anti-Inflammatory Mechanisms. J Clin Med 2019; 8:jcm8070957. [PMID: 31269685 PMCID: PMC6678129 DOI: 10.3390/jcm8070957] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
Damage associated molecular pattern (DAMPs), such as high mobility group box 1 (HMGB1), may be involved in retinal inflammation in response to high glucose. To test whether HMGB1 inhibition could protect the diabetic retina, C57BL/6J mice were made diabetic and treated with glycyrrhizin, a HMGB1 inhibitor, for up to six months. Measurements of permeability, neuronal, and vascular changes were done, as well as assessments of HMGB1, tumor necrosis factor alpha (TNFα), and interleukin-1-beta (IL1β) levels. Retinal endothelial cells (REC) treated with glycyrrhizin had reduced IL1β and cleaved caspase 3 levels. Data also demonstrate that glycyrrhizin effectively reduced HMGB1 levels throughout the retina, as well as maintained normal retinal permeability and retinal capillary coverage. Glycyrrhizin maintained normal cell numbers in the ganglion cell layer and prevented thinning of the retina at two months. These histological changes were associated with reduced reactive oxygen species, as well as reduced HMGB1, TNFα, and IL1β levels. The data strongly imply that HMGB1 inhibition prevented diabetic retinal changes through anti-inflammatory pathways.
Collapse
|
30
|
Bentz GL, Lowrey AJ, Horne DC, Nguyen V, Satterfield AR, Ross TD, Harrod AE, Uchakina ON, McKallip RJ. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS One 2019; 14:e0217578. [PMID: 31125383 PMCID: PMC6534330 DOI: 10.1371/journal.pone.0217578] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Cellular sumoylation processes are proposed targets for anti-viral and anti-cancer therapies. We reported that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) dysregulates cellular sumoylation processes, contributing to its oncogenic potential in EBV-associated malignancies. Ginkgolic acid and anacardic acid, known inhibitors of sumoylation, inhibit LMP1-induced protein sumoylation; however, both drugs have adverse effects in hosts. Here we test the effects of glycyrrhizic acid, a medicinal botanical extract with anti-inflammatory, anti-carcinogenic, and anti-viral properties, on cellular sumoylation processes. While glycyrrhizic acid is known to inhibit EBV penetration, its affect on cellular sumoylation processes remains to be documented. We hypothesized that glycyrrhizic acid inhibits cellular sumoylation processes and may be a viable treatment for Epstein-Barr virus-associated malignancies. Results showed that glycyrrhizic acid inhibited sumoylation processes (without affecting ubiquitination processes), limited cell growth, and induced apoptosis in multiple cell lines. Similar to ginkgolic acid; glycyrrhizic acid targeted the first step of the sumoylation process and resulted in low levels of spontaneous EBV reactivation. Glycyrrhizic acid did not affect induced reactivation of the virus, but the presence of the extract did reduce the ability of the produced virus to infect additional cells. Therefore, we propose that glycyrrhizic acid may be a potential therapeutic drug to augment the treatment of EBV-associated lymphoid malignancies.
Collapse
Affiliation(s)
- Gretchen L Bentz
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Angela J Lowrey
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Dustin C Horne
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Vy Nguyen
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Austin R Satterfield
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Tabithia D Ross
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Abigail E Harrod
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Olga N Uchakina
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| | - Robert J McKallip
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
| |
Collapse
|
31
|
Li X, Liu H, Shao Y, Ma G, Song D, Xu G, Wang Z. Wide Identification of the Compounds in Licorice and Exploration of the Mechanism for Prostatitis Treatment by Combining UHPLC‐LTQ‐Orbitrap MS with Network Pharmacology. ChemistrySelect 2019. [DOI: 10.1002/slct.201802661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuming Li
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| | - Hui Liu
- School of PharmacyMinzu University of China Beijing 100081 China
| | - Yuanyang Shao
- School of Chinese Materia MedicaBeijing University of Chinese Medicine Beijing 102488 China
| | - Guang Ma
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| | - Dianbin Song
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| | - Guojie Xu
- School of Life ScienceBeijing University of Chinese Medicine Beijing 102488 China
| | - Zhiyong Wang
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| |
Collapse
|
32
|
Wang BK, Mao YL, Gong L, Xu X, Jiang SQ, Wang YB, Li WF. Glycyrrhizic acid activates chicken macrophages and enhances their Salmonella-killing capacity in vitro. J Zhejiang Univ Sci B 2019; 19:785-795. [PMID: 30269446 PMCID: PMC6194354 DOI: 10.1631/jzus.b1700506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective: Salmonella enterica remains a major cause of food-borne disease in humans, and Salmonella Typhimurium (ST) contamination of poultry products is a worldwide problem. Since macrophages play an essential role in controlling Salmonella infection, the aim of this study was to evaluate the effect of glycyrrhizic acid (GA) on immune function of chicken HD11 macrophages. Methods: Chicken HD11 macrophages were treated with GA (0, 12.5, 25, 50, 100, 200, 400, or 800 μg/ml) and lipopolysaccharide (LPS, 500 ng/ml) for 3, 6, 12, 24, or 48 h. Evaluated responses included phagocytosis, bacteria-killing, gene expression of cell surface molecules (cluster of differentiation 40 (CD40), CD80, CD83, and CD197) and antimicrobial effectors (inducible nitric oxide synthase (iNOS), NADPH oxidase-1 (NOX-1), interferon-γ (IFN-γ), LPS-induced tumor necrosis factor (TNF)-α factor (LITAF), interleukin-6 (IL-6), and IL-10), and production of nitric oxide (NO) and hydrogen peroxide (H2O2). Results: GA increased the internalization of both fluorescein isothiocyanate (FITC)-dextran and ST by HD11 cells and markedly decreased the intracellular survival of ST. We found that the messenger RNA (mRNA) expression of cell surface molecules (CD40, CD80, CD83, and CD197) and cytokines (IFN-γ, IL-6, and IL-10) of HD11 cells was up-regulated following GA exposure. The expression of iNOS and NOX-1 was induced by GA and thereby the productions of NO and H2O2 in HD11 cells were enhanced. Notably, it was verified that nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways were responsible for GA-induced synthesis of NO and IFN-γ gene expression. Conclusions: Taken together, these results suggested that GA exhibits a potent immune regulatory effect to activate chicken macrophages and enhances Salmonella-killing capacity.
Collapse
Affiliation(s)
- Bai-Kui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Long Mao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shou-Qun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yi-Bing Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Fen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Mamedov NA, Egamberdieva D. Phytochemical Constituents and Pharmacological Effects of Licorice: A Review. PLANT AND HUMAN HEALTH, VOLUME 3 2019. [PMCID: PMC7123875 DOI: 10.1007/978-3-030-04408-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Licorice (or “liquorice”) is one of most widely used in foods, herbal medicine, and extensively researched medicinal plants of the world. In traditional medicine licorice roots have been used against treating many ailments including lung diseases, arthritis, kidney diseases, eczema, heart diseases, gastric ulcer, low blood pressure, allergies, liver toxicity, and certain microbial infections. Licorice extract contains sugars, starch, bitters, resins, essential oils, tannins, inorganic salts, and low levels of nitrogenous constituents such as proteins, individual amino acids, and nucleic acids. A large number of biological active compounds have been isolated from Glycyrrhiza species, where triterpene saponins and flavonoids are the main constitutes which show broad biological activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
|
34
|
Anti-inflammatory effect of Chunkoongkeigi-tang on IL-1β-induced inflamed A549 by the inhibition of COX-2 expression. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Formulated Chinese Medicine Shaoyao Gancao Tang Reduces Tau Aggregation and Exerts Neuroprotection through Anti-Oxidation and Anti-Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9595741. [PMID: 30510632 PMCID: PMC6230396 DOI: 10.1155/2018/9595741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
Misfolded tau proteins induce accumulation of free radicals and promote neuroinflammation by activating microglia-releasing proinflammatory cytokines, leading to neuronal cell death. Traditional Chinese herbal medicines (CHMs) have been widely used in clinical practice to treat neurodegenerative diseases associated with oxidative stress and neuroinflammation. This study examined the neuroprotection effects of formulated CHMs Bai-Shao (made of Paeonia lactiflora), Gan-Cao (made of Glycyrrhiza uralensis), and Shaoyao Gancao Tang (SG-Tang, made of P. lactiflora and G. uralensis at 1 : 1 ratio) in cell model of tauopathy. Our results showed that SG-Tang displayed a greater antioxidative and antiaggregation effect than Bai-Shao and Gan-Cao and a stronger anti-inflammatory activity than Bai-Shao but similar to Gan-Cao. In inducible 293/SH-SY5Y cells expressing proaggregant human tau repeat domain (ΔK280 tauRD), SG-Tang reduced tau misfolding and reactive oxygen species (ROS) level in ΔK280 tauRD 293 cells and promoted neurite outgrowth in ΔK280 tauRD SH-SY5Y cells. Furthermore, SG-Tang displayed anti-inflammatory effects by reducing nitric oxide (NO) production in mouse BV-2 microglia and increased cell viability of ΔK280 tauRD-expressing SH-SY5Y cells inflamed by BV-2 conditioned medium. To uncover the neuroprotective mechanisms of SG-Tang, apoptosis protein array analysis of inflamed tau expressing SH-SY5Y cells was conducted and the suppression of proapoptotic proteins was confirmed. In conclusion, SG-Tang displays neuroprotection by exerting antioxidative and anti-inflammatory activities to suppress neuronal apoptosis in human tau cell models. The study results lay the base for future applications of SG-Tang on tau animal models to validate its effect of reducing tau misfolding and potential disease modification.
Collapse
|
36
|
A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3- O-Mono-β-d-Glucuronide. Appl Environ Microbiol 2018; 84:AEM.00755-18. [PMID: 30054355 DOI: 10.1128/aem.00755-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which possesses a higher sweetness and stronger pharmacological activity than those of glycyrrhizin (GL), can be obtained by removal of the distal glucuronic acid (GlcA) from GL. In this study, we isolated a β-glucuronidase (TpGUS79A) from the filamentous fungus Talaromyces pinophilus Li-93 that can specifically and precisely convert GL to GAMG without the formation of the by-product glycyrrhetinic acid (GA) from the further hydrolysis of GAMG. First, TpGUS79A was purified and identified through matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF-TOF MS) and deglycosylation, indicating that TpGUS79A is a highly N-glycosylated monomeric protein with a molecular mass of around 85 kDa, including around 25 kDa of glycan moiety. The gene for TpGUS79A was then cloned and verified by heterologous expression in Pichia pastoris TpGUS79A belonged to glycoside hydrolase family 79 (GH79) but shared low amino acid sequence identity (<35%) with the available GH79 GUS enzymes. TpGUS79A had strict specificity toward the glycan moiety but poor specificity toward the aglycone moiety. Interestingly, TpGUS79A recognized and hydrolyzed the distal glucuronic bond of GL but could not cleave the glucuronic bond in GAMG. TpGUS79A showed a much higher catalytic efficiency on GL (kcat/Km of 11.14 mM-1 s-1) than on the artificial substrate pNP β-glucopyranosiduronic acid (kcat/Km of 0.01 mM-1 s-1), which is different from the case for most GUSs. Homology modeling, substrate docking, and sequence alignment were employed to identify the key residues for substrate recognition. Finally, a fed-batch fermentation in a 150-liter fermentor was established to prepare GAMG through GL hydrolysis by T. pinophilus Li-93. Therefore, TpGUS79A is potentially a powerful biocatalyst for environmentally friendly and cost-effective production of GAMG.IMPORTANCE Compared to chemical methods, the biotransformation of glycyrrhizin (GL) into glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which has a higher sweetness and stronger pharmacological activity than those of GL, via catalysis by β-glucuronidase is an environmentally friendly approach due to the mild reaction conditions and the high yield of GAMG. However, currently available GUSs show low substrate specificity toward GL and further hydrolyze GAMG to glycyrrhetinic acid (GA) as a by-product, increasing the difficulty of subsequent separation and purification. In the present study, we succeeded in isolating a novel β-glucuronidase (named TpGUS79A) from Talaromyces pinophilus Li-93 that specifically hydrolyzes GL to GAMG without the formation of GA. TpGUS79A also shows higher activity on GL than those of the previously characterized GUSs. Moreover, the gene for TpGUS79A was cloned and its function verified by heterologous expression in P. pastoris Therefore, TpGUS79A can serve as a powerful biocatalyst for the cost-effective production of GAMG through GL transformation.
Collapse
|
37
|
Kamisli S, Ciftci O, Taslidere A, Basak Turkmen N, Ozcan C. The beneficial effects of 18β-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mouse model. Immunopharmacol Immunotoxicol 2018; 40:344-352. [PMID: 30052483 DOI: 10.1080/08923973.2018.1490318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The aim of this study was to investigate the beneficial effects of 18β-glycyrrhetinic acid (GA) on the experimental allergic encephalomyelitis (EAE) in C57BL/6 mice. GA is a natural substance found in the root of licorice and is used in traditional Chinese medicine. It has many pharmacological activities such as antioxidant, anti-inflammatory, and anti-cancer effects. MATERIALS AND METHODS A total of 40 C57BL/6 mice were divided equally into four groups: (1) Control, (2) EAE, (3) GA and (4) GA + EAE. 14 days after induction of EAE with MOG35-55 and pertussis toxin, mice were treated with GA at doses of 100 mg/kg/day for 7 days intraperitoneally. RESULTS To our results, oxidative stress and lipid peroxidations (elevated TBARS levels, decreased GPx, SOD, CAT, and GSH levels) were significantly (p < .01) increased, causing EAE in brain tissue. Also, histopathological damage (Caspase-3 and IL-17 activity, p ≤ .01) and cytokine levels (TNF-α and IL-1β, p < .01) were induced with EAE in mice brain tissue. On the other hand, GA treatment significantly (p < .01) reversed oxidative histological and immunological alterations caused by EAE. CONCLUSIONS In conclusion, the GA treatment can protect the brain tissue against EAE in mice with its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Suat Kamisli
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| | - Osman Ciftci
- b Faculty of Medicine, Department of Pharmacology , University of Pamukkale , Denizli , Turkey
| | - Asli Taslidere
- c Faculty of Medicine, Department of Histology and Embryology , University of Inonu , Malatya , Turkey
| | - Nese Basak Turkmen
- d Faculty of Pharmacy, Department of Pharmaceutical Toxicology , University of Inonu , Malatya , Turkey
| | - Cemal Ozcan
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| |
Collapse
|
38
|
Li Y, Gao Y, Wang B, Hao J, Hu J, Ju Y. Natural Triterpenoid- and Oligo(Ethylene Glycol)-Pendant-Containing Block and Random Copolymers: Aggregation and pH-Controlled Release. Chem Asian J 2018; 13:2723-2729. [PMID: 29984894 DOI: 10.1002/asia.201800761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/08/2018] [Indexed: 12/20/2022]
Abstract
In this research, a series of random and block amphiphilic copolymers of norbornene derivatives containing biocompatible natural triterpenoid and oligo(ethylene glycol) pendants were synthesized by ring-opening metathesis polymerization. These copolymers were heat and pH responsive, and could self-assemble into core-shell spherical micelles in aqueous solution. Their hydrodynamic diameters corresponded to pH values and monomer sequences. By evaluating the loading and release capacity of hydrophobic molecules, it was found that 1) the higher the content of the hydrophobic triterpenoid, the higher the loading capacity; 2) the release speed could be trigged by the pH because of the deprotonation of the carboxyl groups on the triterpenoid. Additionally, the copolymers exhibited low cytotoxicity toward L929 cells, which makes them potential nanocarrier candidates for controlled drug delivery.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuxia Gao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo Wang
- State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jie Hao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yong Ju
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
39
|
Yeo PL, Lim CL, Chye SM, Kiong Ling AP, Koh RY. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. ASIAN BIOMED 2018. [DOI: 10.1515/abm-2018-0002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Target-specific drug-delivery systems for the administration of pharmaceutical compounds enable the localization of drugs to diseased sites. Various types of drug-delivery systems utilize carriers, such as immunoglobulins, serum proteins, synthetic polymers, liposomes, and microspheres. The vesicular system of niosomes, with their bilayer structure assembled by nonionic surfactants, is able to enhance the bioavailability of a drug to a predetermined area for a period. The amphiphilic nature of niosomes promotes their efficiency in encapsulating lipophilic or hydrophilic drugs. Other additives, such as cholesterol, can be used to maintain the rigidity of the niosomes’ structure. This narrative review describes fundamental aspects of niosomes, including their structural components, methods of preparation, limitations, and current applications to various diseases.
Collapse
Affiliation(s)
- Pei Ling Yeo
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology , International Medical University , No. 126, Jalan Jalil Perkasa 19 , Bukit Jalil , 57000 Kuala Lumpur , Malaysia
| |
Collapse
|
40
|
Shi HJ, Song HB, Wang L, Xiao SX, Bo KP, Ma W. The synergy of diammonium glycyrrhizinate remarkably reduces the toxicity of oxymatrine in ICR mice. Biomed Pharmacother 2017; 97:19-25. [PMID: 29080454 DOI: 10.1016/j.biopha.2017.09.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022] Open
Abstract
Most traditional Chinese medicine prescription dosages are imprecise. This study analyzes the toxicities and adverse effects of a combination the active ingredients of licorice and Kushen medicine: oxymatrine (OMT) and diammonium glycyrrhizinate (DG). The median lethal dose (LD50) and mortality were analyzed in single-dose OMT (or DG) intraperitoneally injected mice with or without combination DG (or OMT). Body weight changes as well as levels of serum sodium and potassium, alanine transaminase (ALT), aspartate transaminase (AST), creatinine, and urea were measured in mice treated with a daily dose of OMT and/or DG for 14days. This study showed that the LD50 of OMT for males and females were 347.44 and 429.15mg/kg, respectively. The LD50 of DG were 525.10 and 997.26mg/kg for males and females, respectively. DG significantly decreased the mice LD50-induced mortality of the OMT, however OMT did not succeed in reducing the LD50-induced mortality rate of DG. The combination of OMT and DG obviously attenuated the changes of the body weight, serum sodium, and potassium induced by DG or OMT alone. These results suggested that toxicity and adverse effects of the OMT was significantly attenuated by DG. The OMT neutralized the adverse effects of the DG, but not the toxicity.
Collapse
Affiliation(s)
- Hui-Juan Shi
- Department of Dermatovenereology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shanxi Province, 710004, China; Department of Dermatovenereology, Ningxia Medical University General Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Hong-Bin Song
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Le Wang
- Department of Dermatovenereology, Ningxia Medical University General Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Sheng-Xiang Xiao
- Department of Dermatovenereology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shanxi Province, 710004, China.
| | - Kai-Ping Bo
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Wei Ma
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
41
|
Xu Y, Liu Y, Rasool A, E W, Li C. Sequence editing strategy for improving performance of β-glucuronidase from Aspergillus terreus. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Li B, Yang Y, Chen L, Chen S, Zhang J, Tang W. 18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway. MEDCHEMCOMM 2017; 8:1498-1504. [PMID: 30108861 PMCID: PMC6071922 DOI: 10.1039/c7md00210f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/28/2017] [Indexed: 01/19/2023]
Abstract
Based on the SAR analysis of glycyrrhizin, 18α-glycyrrhetinic acid monoglucuronide (18α-GAMG) with strong inhibition against LPS-induced NO and IL-6 production in RAW264.7 cells was discovered. Western blotting and immunofluorescence results showed that 18α-GAMG reduced the expression of iNOS, COX-2, and MAPKs, as well as activation of NF-κB in the LPS-stimulated RAW264.7 cells. Further in vivo results showed that 18α-GAMG could significantly improve the pathological changes of CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Bo Li
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| | - Yongan Yang
- Elion Nature Biological Technology Co., Ltd , Nanjing 210038 , China
| | - Liuzeng Chen
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| | - Shichao Chen
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease , Anhui No. 2 Province People's Hospital , Hefei 230022 , China .
| | - Wenjian Tang
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| |
Collapse
|
43
|
Liu L, Jiang Y, Steinle JJ. Inhibition of HMGB1 protects the retina from ischemia-reperfusion, as well as reduces insulin resistance proteins. PLoS One 2017; 12:e0178236. [PMID: 28542588 PMCID: PMC5441648 DOI: 10.1371/journal.pone.0178236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022] Open
Abstract
The role of inflammation in diabetic retinal amage is well accepted. While a number of cytokines and inflammatory mediators are responsible for these changes, upstream regulators are less well studied. Additionally, the role for these upstream mediators in retinal health is unclear. In this study, we hypothesized that inhibition of high mobility group box 1 (HMGB1) could restore normal insulin signaling in retinal endothelial cells (REC) grown in high glucose, as well as protect the retina against ischemia/reperfusion (I/R)-induced retinal damage. REC were grown in normal (5mM) or high glucose (25mM) and treated with Box A or glycyrrhizin, two different HMGB1 inhibitors. Western blotting was done for HMGB1, toll-like receptor 4 (TLR4), insulin receptor, insulin receptor substrate-1 (IRS-1), and Akt. ELISA analyses were done for tumor necrosis factor alpha (TNFα) and cleaved caspase 3. In addition, C57/B6 mice were treated with glycyrrhizin, both before and after ocular I/R. Two days following I/R, retinal sections were processed for neuronal changes, while vascular damage was measured at 10 days post-I/R. Results demonstrate that both Box A and glycyrrhizin reduced HMGB1, TLR4, and TNFα levels in REC grown in high glucose. This led to reduced cleavage of caspase 3 and IRS-1Ser307 phosphorylation, and increased insulin receptor and Akt phosphorylation. Glycyrrhizin treatment significantly reduced loss of retinal thickness and degenerate capillary numbers in mice exposed to I/R. Taken together, these results suggest that inhibition of HMGB1 can reduce retinal insulin resistance, as well as protect the retina against I/R-induced damage.
Collapse
Affiliation(s)
- Li Liu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jena J. Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Ophthalmology Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
44
|
Liu C, Yang N, Chen X, Tversky J, Zhan J, Chehade M, Miller RL, Li XM. The Flavonoid 7,4'-Dihydroxyflavone Prevents Dexamethasone Paradoxical Adverse Effect on Eotaxin Production by Human Fibroblasts. Phytother Res 2017; 31:449-458. [PMID: 28102022 DOI: 10.1002/ptr.5767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023]
Abstract
Eotaxin/CCL-11 is a major chemoattractant that contributes to eosinophilic inflammation in asthma. Glucocorticoids inhibit inflammation, but long-time exposure may cause paradoxical adverse effects by augmenting eotaxin/CCL-11production. The aim of this study was to determine if 7,4'-dihydroxyflavone (7,4'-DHF), the eotaxin/CCL11 inhibitor isolated from Glycyrrhiza uralensis, reduces in vitro eotaxin production induced by long-time dexamethasone (Dex) exposure, and if so, to elucidate the mechanisms of this inhibition. Human lung fibroblast-1 cells were used to identify the potency of 7,4'-DHF compared with other compounds from G. uralensis, to compare 7,4'-DHF with Dex on eotaxin production following 24-h short-time culture and 72-h longer-time (LT) culture, and to determine the effects of the 7,4'-DHF on Dex LT culture augmented eotaxin production and molecule mechanisms. 7,4'-DHF was the most potent eotaxin/CCL-11 inhibitor among the ten compounds and provided continued suppression. In contrast to short-time culture, Dex LT culture increased constitutively, and IL-4/TNF-α stimulated eotaxin/CCL11 production by human lung fibroblast-1 cells. This adverse effect was abrogated by 7,4'-DHF co-culture. 7,4'-DHF significantly inhibited Dex LT culture augmentation of p-STAT6 and impaired HDAC2 expression. This study demonstrated that 7,4'-DHF has the ability to consistently suppress eotaxin production and prevent Dex-paradoxical adverse effects on eotaxin production. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Changda Liu
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nan Yang
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoke Chen
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Respiratory Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Jody Tversky
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322, USA
| | - Mirna Chehade
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University, New York, NY, 10032, USA.,Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Xiu-Min Li
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
45
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
46
|
Chen J, Zhang W, Zhang L, Zhang J, Chen X, Yang M, Chen T, Hong J. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice. JOURNAL OF RADIATION RESEARCH 2017; 58:41-47. [PMID: 27672101 PMCID: PMC5321194 DOI: 10.1093/jrr/rrw091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/14/2016] [Accepted: 07/18/2016] [Indexed: 05/18/2023]
Abstract
Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- Jinmei Chen
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| | - Weijian Zhang
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| | - Lurong Zhang
- Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| | - Jiemin Zhang
- Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| | - Xiuying Chen
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| | - Meichun Yang
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| | - Ting Chen
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| | - Jinsheng Hong
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
- Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou City, Fujian Province, China
| |
Collapse
|
47
|
Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, Gonos ES, Chondrogianni N. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer's Disease Progression in Caenorhabditis elegans and Neuronal Cultures. Antioxid Redox Signal 2016; 25:855-869. [PMID: 26886723 PMCID: PMC5124744 DOI: 10.1089/ars.2015.6494] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. RESULTS Feeding of wild-type Caenorhabditis elegans with 18α-glycyrrhetinic acid (18α-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasome activation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased Aβ deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18α-GA treatment. INNOVATION This is the first report of the use of 18α-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. CONCLUSION Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet. Antioxid. Redox Signal. 25, 855-869.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,2 Faculty of Biology and Pharmacy, Institute of Nutrition, Friedrich Schiller University of Jena , Jena, Germany
| | - Marianthi Sakellari
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,3 Medical School, Örebro University , Örebro, Sweden
| | - Sweta Jha
- 4 Translational Cancer Biology Program, Research Programs Unit, University of Helsinki , Helsinki, Finland
| | - Nektarios Tavernarakis
- 5 Institute of Molecular Biology and Biotechnology , Foundation for Research and Technology-Hellas, Heraklion, Greece .,6 Faculty of Medicine, Department of Basic Sciences, University of Crete , Heraklion, Greece
| | - Carina I Holmberg
- 4 Translational Cancer Biology Program, Research Programs Unit, University of Helsinki , Helsinki, Finland
| | - Efstathios S Gonos
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,3 Medical School, Örebro University , Örebro, Sweden
| | - Niki Chondrogianni
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece
| |
Collapse
|
48
|
Xu G, Cai W, Gao W, Liu C. A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin. THE NEW PHYTOLOGIST 2016; 212:123-35. [PMID: 27252088 PMCID: PMC7167757 DOI: 10.1111/nph.14039] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
Glycyrrhizin is an important bioactive compound that is used clinically to treat chronic hepatitis and is also used as a sweetener world-wide. However, the key UDP-dependent glucuronosyltransferases (UGATs) involved in the biosynthesis of glycyrrhizin remain unknown. To discover unknown UGATs, we fully annotated potential UGATs from Glycyrrhiza uralensis using deep transcriptome sequencing. The catalytic functions of candidate UGATs were determined by an in vitro enzyme assay. Systematically screening 434 potential UGATs, we unexpectedly found one unique GuUGAT that was able to catalyse the glucuronosylation of glycyrrhetinic acid to directly yield glycyrrhizin via continuous two-step glucuronosylation. Expression analysis further confirmed the key role of GuUGAT in the biosynthesis of glycyrrhizin. Site-directed mutagenesis revealed that Gln-352 may be important for the initial step of glucuronosylation, and His-22, Trp-370, Glu-375 and Gln-392 may be important residues for the second step of glucuronosylation. Notably, the ability of GuUGAT to catalyse a continuous two-step glucuronosylation reaction was determined to be unprecedented among known glycosyltransferases of bioactive plant natural products. Our findings increase the understanding of traditional glycosyltransferases and pave the way for the complete biosynthesis of glycyrrhizin.
Collapse
Affiliation(s)
- Guojie Xu
- School of Chinese Material MedicaBeijing University of Chinese MedicineBeijing100102China
| | - Wei Cai
- School of Chinese Material MedicaBeijing University of Chinese MedicineBeijing100102China
| | - Wei Gao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijing100069China
| | - Chunsheng Liu
- School of Chinese Material MedicaBeijing University of Chinese MedicineBeijing100102China
| |
Collapse
|
49
|
Huang YC, Kuo CL, Lu KW, Lin JJ, Yang JL, Wu RSC, Wu PP, Chung JG. 18α-Glycyrrhetinic Acid Induces Apoptosis of HL-60 Human Leukemia Cells through Caspases- and Mitochondria-Dependent Signaling Pathways. Molecules 2016; 21:molecules21070872. [PMID: 27376261 PMCID: PMC6273602 DOI: 10.3390/molecules21070872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 11/29/2022] Open
Abstract
In this study we investigate the molecular mechanisms of caspases and mitochondria in the extrinsic and intrinsic signal apoptosis pathways in human leukemia HL-60 cells after in vitro exposure to 18α-glycyrrhetinic acid (18α-GA). Cells were exposed to 18α-GA at various concentrations for various time periods and were harvested for flow cytometry total viable cell and apoptotic cell death measurements. Cells treated with 18α-GA significantly inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner, with an IC50 value of 100 μM at 48 h. The cell growth inhibition resulted in induction of apoptosis and decreased the mitochondria membrane potential (ΔΨm) and increased caspase-8, -9 and -3 activities. Furthermore, cytochrome c and AIF were released from mitochondria, as shown by western blotting and confirmed by confocal laser microscopy. Western blotting showed that 18α-GA increased the levels of pro-apoptotic proteins such as Bax and Bid and decreased the anti-apoptotic proteins such as Bcl-2 and Bcl-xl, furthermore, results also showed that 18α-GA increased Fas and Fas-L which are associated with surface death receptor in HL-60 cells. Based on those observations, the present study supports the hypothesis that 18α-GA-induced apoptosis in HL-60 cells involves the activation of the both extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Yi-Chang Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jen-Jyh Lin
- Division of Cardiology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Jiun-Long Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
50
|
Glycyrrhetic Acid Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Vivo. Molecules 2016; 21:523. [PMID: 27110761 PMCID: PMC6273862 DOI: 10.3390/molecules21040523] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhizae Radix (GR) is a Korean traditional herb medicine that is widely used in clinical health care. Glycyrrhetic acid (GA) is an aglycone saponin extracted from GR that has anti-inflammatory, anti-cancer, and anti-viral effects. However, the anti-inflammatory effects of GA in colitis have not been reported. This study investigated the role of GA on ulcerative colitis in a dextran sulfate sodium (DSS)-induced mouse colitis model. DSS-treated mice displayed weight loss and shortened colon length compared with control mice. Mice administered GA showed less weight loss and longer colon length than the DSS-treated group. Interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha were decreased by GA treatment. GA treatment also reduced DSS-induced microscopic damage to colon tissue. GA regulates the phosphorylation of transcription factors including nuclear factor-kappa B (NF-κB) and IκB alpha, and regulates the expression of cycloxygenase-2 and prostaglandin E2. GA thus showed beneficial effects in a mouse model of colitis, implicating GA might be a useful herb-derived medicine in the treatment of ulcerative colitis.
Collapse
|