1
|
Shukuri M, Onoe S, Karube T, Mokudai R, Wakui H, Asano H, Murai S, Akizawa H. Assessment of Radiolabelled Derivatives of R954 for Detection of Bradykinin B1 Receptor in Cancer Cells: Studies on Glioblastoma Xenografts in Mice. Pharmaceuticals (Basel) 2024; 17:902. [PMID: 39065752 PMCID: PMC11279923 DOI: 10.3390/ph17070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Bradykinin B1 receptor (B1R) has garnered attention as a cancer therapeutic and diagnostic target. Several reports on radiolabelled derivatives of B1R antagonists have shown favourable properties as imaging agents in cells highly expressing hB1R following transfection. In the present study, we assessed whether radiolabelled probes can detect B1R endogenously expressed in cancer cells. To this end, we evaluated 111In-labelled derivatives of a B1R antagonist ([111In]In-DOTA-Ahx-R954) using glioblastoma cell lines (U87MG and U251MG) with different B1R expression levels. Cellular uptake studies showed that the specific accumulation of [111In]In-DOTA-Ahx-R954 in U87MG was higher than that in U251MG, which correlated with B1R expression levels. Tissue distribution in U87MG-bearing mice revealed approximately 2-fold higher radioactivity in tumours than in the muscle in the contralateral leg. The specific accumulation of [111In]In-DOTA-Ahx-R954 in the tumour was demonstrated by the reduction in the tumour-to-plasma ratios in nonlabelled R954-treated mice. Moreover, ex vivo autoradiographic images revealed that the intratumoural distribution of [111In]In-DOTA-Ahx-R954 correlated with the localisation of B1R-expressing glioblastoma cells. In conclusion, we demonstrated that [111In]In-DOTA-Ahx-R954 radioactivity correlated with B1R expression in glioblastoma cells, indicating that radiolabelled derivatives of the B1R antagonist could serve as promising tools for elucidating the involvement of B1R in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hiromichi Akizawa
- Laboratory of Physical Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| |
Collapse
|
2
|
Warman M, Lahav Y, Huszar M, Hadad L, Halperin D, Cohen O. Down-Expression of Kinin Receptors in Allergic Nasal Polyps Epithelia: An Immunohistochemistry Study. Otolaryngol Head Neck Surg 2020; 162:375-381. [PMID: 31986968 DOI: 10.1177/0194599819900899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To investigate the expression of B1 and B2 receptors in patients with nasal polyps (NPs) compared to controls. STUDY DESIGN Retrospective case series. SETTINGS Single academic center. SUBJECTS AND METHODS Nasal biopsies of patients with NPs were compared to inferior turbinates of control patients. Comparisons included basic demographics and comorbidities, intensity of inflammation, and immunohistochemical staining of B1 and B2 receptors measured by immunohistochemistry staining scores (ISSs). RESULTS A total of 41 patients were enrolled, with 21 patients (51.2%) in the NP group and 20 patients as controls. No differences were found in the prevalence of allergic comorbidities and smoking between the groups. The NP group demonstrated significantly higher prevalence of moderate and severe mononuclear infiltrates compared to the control group (57.1% vs 5.3%, P < .001). The NP group had significantly lower B1 expression in smooth muscle compared to the control group (mean ISS 0.22 vs 1.56, P < .001, respectively) and significantly more B2 expression in epithelial cells (mean ISS 1.81 vs 0, P < .001, respectively). CONCLUSION Patients with NPs exhibit different expression patterns of B1 and B2 compared to control patients. This implies that bradykinin receptor regulation participates in the pathogenesis of NPs.
Collapse
Affiliation(s)
- Meir Warman
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel.,Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Yonatan Lahav
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel.,Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Monica Huszar
- Hadassah Medical School, Hebrew University, Jerusalem, Israel.,Department of Pathology, Kaplan Medical Center, Rehovot, Israel
| | - Liad Hadad
- Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Doron Halperin
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel.,Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Oded Cohen
- Department of Otolaryngology, Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel.,Hadassah Medical School, Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
da Costa PLN, Wynne D, Fifis T, Nguyen L, Perini M, Christophi C. The kallikrein-Kinin system modulates the progression of colorectal liver metastases in a mouse model. BMC Cancer 2018; 18:382. [PMID: 29618333 PMCID: PMC5885419 DOI: 10.1186/s12885-018-4260-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/20/2018] [Indexed: 01/06/2023] Open
Abstract
Background The Kallikrein-Kinin System (KKS) has been found to play a role in tumor progression in several cancers. The KKS metabolic cascade depends on signalling through two cross talking receptors; bradykinin receptor 1 (B1R) and bradykinin receptor 2 (B2R). Activation of the Kinin receptor is responsible for multiple pathophysiologic functions including increase of vascular permeability and induction of host inflammatory responses that exert diverse effects on tumor growth. Methods B1R and B2R expression on mouse and human CRC cell lines was investigated. Changes in tumor growth and progression was assessed in male CBA mice bearing colorectal liver metastases (CRLM) following treatment with B1R or B2R blockers. In vitro cultures of human SW-480 and mouse colorectal cancer (MoCR) cell lines were examined for changes in their proliferation and migration properties following treatment with B1R or B2R blockers. Results Both colorectal cancer cell lines tested strongly positive for B1R and B2R expression. Inhibition of both receptors retarded tumor growth but only B1R blockade significantly reduced tumor load and increased tumor apoptosis. Blockade of either receptor reduced tumor vascularization in vivo and significantly inhibited proliferation and migration of colorectal cancer cells in vitro. Conclusion Taken together, the present study demonstrated that kinin receptor blockade inhibited tumor growth and reduced its invading properties suggesting that KKS manipulation could be a novel target in colorectal cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4260-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Luiza Nunes da Costa
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia.,Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - David Wynne
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia.
| | - Linh Nguyen
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Marcos Perini
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Christopher Christophi
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
4
|
Wang B, Yang A, Zhao Z, He C, Liu Y, Colman RW, Dai J, Wu Y. The Plasma Kallikrein-Kininogen Pathway Is Critical in the Pathogenesis of Colitis in Mice. Front Immunol 2018; 9:21. [PMID: 29467753 PMCID: PMC5808240 DOI: 10.3389/fimmu.2018.00021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
The kallikrein-kinin system (KKS) consists of two serine proteases, prekallikrein (pKal) and factor XII (FXII), and a cofactor, high-molecular-weight kininogen (HK). Upon activation of the KKS, HK is cleaved to release bradykinin. Although the KKS is activated in humans and animals with inflammatory bowel disease (IBD), its role in the pathogenesis of IBD has not been characterized. In the present study, we determined the role of the KKS in the pathogenesis of IBD using mice that lack proteins involved in the KKS. In two colitis models, induced by dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS), mice deficient in HK, pKal, or bradykinin receptors displayed attenuated phenotypes, including body weight loss, disease activity index, colon length shortening, histological scoring, and colonic production of cytokines. Infiltration of neutrophils and inflammatory monocytes in the colonic lamina propria was reduced in HK-deficient mice. Reconstitution of HK-deficient mice through intravenous injection of HK recovered their susceptibility to DSS-induced colitis, increased IL-1β levels in the colon tissue and bradykinin concentrations in plasma. In contrast to the phenotypes of other mice lacking other proteins involved in the KKS, mice lacking FXII had comparable colonic inflammation to that observed in wild-type mice. The concentration of bradykinin was significantly increased in the plasma of wild-type mice after DSS-induced colitis. In vitro analysis revealed that DSS-induced pKal activation, HK cleavage, and bradykinin plasma release were prevented by the absence of pKal or the inhibition of Kal. Unlike DSS, TNBS-induced colitis did not trigger HK cleavage. Collectively, our data strongly suggest that Kal, acting independently of FXII, contributes to experimental colitis by promoting bradykinin release from HK.
Collapse
Affiliation(s)
- Bo Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Aizhen Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhenzhen Zhao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Robert W. Colman
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - Jihong Dai
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Yi Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Zhu J, Wang H, Chen J, Wei W. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis. Immunopharmacol Immunotoxicol 2018; 40:134-148. [PMID: 29303013 DOI: 10.1080/08923973.2017.1418883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. AIM This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. RESULTS The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. CONCLUSIONS These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.
Collapse
Affiliation(s)
- Jie Zhu
- a Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of AntiInflammatory and Immune Medicine, Anhui Medical University , Hefei , PR China
| | - Hui Wang
- b Department of Nutrition , Chaohu Hospital of Anhui Medical University, Hefei , PR China
| | - Jingyu Chen
- a Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of AntiInflammatory and Immune Medicine, Anhui Medical University , Hefei , PR China
| | - Wei Wei
- a Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of AntiInflammatory and Immune Medicine, Anhui Medical University , Hefei , PR China
| |
Collapse
|
6
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
7
|
Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer's phenotypic guise against itself: targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017; 8:104615-104637. [PMID: 29262666 PMCID: PMC5732832 DOI: 10.18632/oncotarget.18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or 'corrected' through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy.
Collapse
Affiliation(s)
- Mahjabin Khan
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Tao Huang
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Cheng-Yuan Lin
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Bao-Min Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Zhao-Xiang Bian
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| |
Collapse
|
8
|
Amouroux G, Zhang Z, Pan J, Jenni S, Zhang C, Hundal-Jabal N, Colpo N, Zeisler J, Lin KS, Bénard F. Synthesis and evaluation of a 68Ga-labeled bradykinin B1 receptor agonist for imaging with positron emission tomography. Bioorg Med Chem 2017; 25:690-696. [PMID: 27908753 DOI: 10.1016/j.bmc.2016.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
Abstract
A novel 68Ga-labeled bradykinin B1 receptor (B1R) agonist, 68Ga-Z01115, was synthesized and evaluated for imaging with positron emission tomography (PET). Z01115 exhibited good binding affinity (Ki=25.4±5.1nM) to hB1R. 68Ga-Z01115 was prepared in 74±5 decay-corrected radiochemical yield with >99% radiochemical purity and 155±89GBq/µmol (4.2±2.4Ci/μmol) specific activity. 68Ga-Z01115 was stable in vitro in mouse plasma (93% remaining intact after 60min incubation), and relatively stable in vivo (51±5% remaining intact at 5min post-injection). PET imaging and biodistribution studies in mice showed that 68Ga-Z01115 cleared rapidly from nontarget tissues/organs, and generated high target-to-nontarget contrast images. The uptake of 68Ga-Z01115 in B1R-positive (B1R+) tumor was 5.65±0.59%ID/g at 1h post-injection. Average contrast ratios of B1R+ tumor-to-B1R- tumor, -to-blood and -to-muscle were 24.3, 24.4 and 82.9, respectively. Uptake of 68Ga-Z01115 in B1R+ tumors was reduced by ∼90% with co-injection of cold standard, confirming it was mediated by B1R. Our data suggest that 68Ga-Z01115 is a promising tracer for imaging the expression of B1R that is overexpressed in a variety of cancers.
Collapse
Affiliation(s)
- Guillaume Amouroux
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jinhe Pan
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Silvia Jenni
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Navjit Hundal-Jabal
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 3350-950 West 10th Avenue, Vancouver, British Columbia V5Z 4E3, Canada.
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 3350-950 West 10th Avenue, Vancouver, British Columbia V5Z 4E3, Canada.
| |
Collapse
|
9
|
Wang H, Zhang JX, Ye LP, Li SL, Wang F, Zha WS, Shen T, Wu C, Zhu QX. Plasma Kallikrein-Kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice. J Immunotoxicol 2016; 13:567-79. [PMID: 27027470 DOI: 10.3109/1547691x.2016.1142019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Trichloroethylene (TCE) is a major environmental pollutant. An immunological response is a newly-recognized mechanism for TCE-induced kidney damage. However, the role of the plasma kallikrein-kinin system (KKS) in immune-mediated kidney injury has never been examined. This study aimed to explore the role of the key components of the KKS, i.e. plasma kallikrein (PK), bradykinin (BK) and its receptors B1R and B2R, in TCE-induced kidney injury. A mouse model of skin sensitization was used to explore the mechanism of injury with or without a PK inhibitor PKSI. Kidney function was evaluated by measuring blood urea nitrogen (BUN) and creatinine (Cr) in conjunction with histopathologic characterization. Plasma BK was determined by ELISA; Renal C5b-9 membrane attack complex was evaluated by immunohistochemistry. Expression of BK and PK in the kidney was detected by immunofluorescence. mRNA and protein levels of B1R and B2R were assessed by real-time qPCR and Western blot. As expected, numerous inflammatory cell infiltration and tubular epithelial cell vacuolar degeneration were observed in TCE-sensitized mice. Moreover, serum BUN and Cr and plasma BK were increased. In addition, deposition of BK, PK and C5b-9 were observed and B1R and B2R mRNA and proteins levels were up-regulated. Pre-treatment with PKSI, a highly selective inhibitor of PK, alleviated TCE-induced renal damage. In addition, PKSI attenuated TCE-induced up-regulation of BK, PK and its receptors and C5b-9. These results provided the first evidence that activation of the KKS contributed to immune-mediated renal injury induced by TCE and also helped to identify the KKS as a potential therapeutic target for mitigating chemical sensitization-induced renal damage.
Collapse
Affiliation(s)
- Hui Wang
- a Department of Nutrition , Chaohu Hospital of Anhui Medical University , Anhui , PR China
| | - Jia-Xiang Zhang
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Liang-Ping Ye
- c Institute of Dermatology , Anhui Medical University , Anhui , PR China
| | - Shu-Long Li
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Feng Wang
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Wan-Sheng Zha
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Tong Shen
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China ;,c Institute of Dermatology , Anhui Medical University , Anhui , PR China
| | - Changhao Wu
- d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Qi-Xing Zhu
- c Institute of Dermatology , Anhui Medical University , Anhui , PR China
| |
Collapse
|
10
|
Qu MH, Ji WS, Zhao TK, Fang CY, Mao SM, Gao ZQ. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine. World J Gastrointest Pathophysiol 2016; 7:150-159. [PMID: 26909238 PMCID: PMC4753181 DOI: 10.4291/wjgp.v7.i1.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/29/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion.
METHODS: Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA).
RESULTS: Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production.
CONCLUSION: The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK.
Collapse
|
11
|
Amouroux G, Pan J, Jenni S, Zhang C, Zhang Z, Hundal-Jabal N, Colpo N, Liu Z, Bénard F, Lin KS. Imaging Bradykinin B1 Receptor with 68Ga-Labeled [des-Arg10]Kallidin Derivatives: Effect of the Linker on Biodistribution and Tumor Uptake. Mol Pharm 2015; 12:2879-88. [DOI: 10.1021/acs.molpharmaceut.5b00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillaume Amouroux
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jinhe Pan
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Silvia Jenni
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Navjit Hundal-Jabal
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhibo Liu
- Chemistry
Department, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| |
Collapse
|
12
|
Lin KS, Amouroux G, Pan J, Zhang Z, Jenni S, Lau J, Liu Z, Hundal-Jabal N, Colpo N, Bénard F. Comparative Studies of Three 68Ga-Labeled [Des-Arg10]Kallidin Derivatives for Imaging Bradykinin B1 Receptor Expression with PET. J Nucl Med 2015; 56:622-7. [DOI: 10.2967/jnumed.114.152132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
|
13
|
Liu Z, Amouroux G, Zhang Z, Pan J, Hundal-Jabal N, Colpo N, Lau J, Perrin DM, Bénard F, Lin KS. 18F-Trifluoroborate Derivatives of [Des-Arg10]Kallidin for Imaging Bradykinin B1 Receptor Expression with Positron Emission Tomography. Mol Pharm 2015; 12:974-82. [DOI: 10.1021/acs.molpharmaceut.5b00003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhibo Liu
- Chemistry
Department, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Guillaume Amouroux
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jinhe Pan
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Navjit Hundal-Jabal
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Joseph Lau
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - David M. Perrin
- Chemistry
Department, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| |
Collapse
|
14
|
da Costa PLN, Sirois P, Tannock IF, Chammas R. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett 2013; 345:27-38. [PMID: 24333733 DOI: 10.1016/j.canlet.2013.12.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Kinins are generated within inflammatory tissue microenvironments, where they exert diverse functions, including cell proliferation, leukocyte activation, cell migration, endothelial cell activation and nociception. These pleiotropic functions depend on signaling through two cross talking receptors, the constitutively expressed kinin receptor 2 (B2R) and the inducible kinin receptor 1 (B1R). We have reviewed evidence, which supports the concept that kinin receptors, especially kinin receptor 1, are promising targets for cancer therapy, since (1) many tumor cells express aberrantly high levels of these receptors; (2) some cancers produce kinins and use them as autocrine factors to stimulate their growth; (3) activation of kinin receptors leads to activation of macrophages, dendritic cells and other cells from the tumor microenvironment; (4) kinins have pro-angiogenic properties; (5) kinin receptors have been implicated in cancer migration, invasion and metastasis; and (6) selective antagonists for either B1R or B2R have shown anti-proliferative, anti-inflammatory, anti-angiogenic and anti-migratory properties. The multiple cross talks between kinin receptors and renin-angiotensin system (RAS) as well as its implications for targeting KKS or RAS for the treatment of malignancies are also discussed. It is expected that B1R antagonists would interfere less with housekeeping functions and therefore would be attractive compounds to treat selected types of cancer. Reliable clinical studies are needed to establish the translatability of these data to human settings and the usefulness of kinin receptor antagonists.
Collapse
Affiliation(s)
- Patrícia L N da Costa
- Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil
| | - Pierre Sirois
- CHUL Research Center, Laval University, Quebec City, Canada
| | - Ian F Tannock
- Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Roger Chammas
- Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil.
| |
Collapse
|
15
|
Sgnaolin V, Pereira TCB, Bogo MR, Zanin R, Battastini AMO, Morrone FB, Campos MM. Functional and molecular characterization of kinin B1 and B 2 receptors in human bladder cancer: implication of the PI3Kγ pathway. Invest New Drugs 2012; 31:812-22. [PMID: 23224295 DOI: 10.1007/s10637-012-9907-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/13/2012] [Indexed: 11/28/2022]
Abstract
Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg(9)-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg(9)-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg(9)-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.
Collapse
Affiliation(s)
- V Sgnaolin
- Prostgraduate Program in Medicine and Health Sciences, Pontificia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Partenon, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Figueroa CD, Ehrenfeld P, Bhoola KD. Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 2012; 16:299-312. [DOI: 10.1517/14728222.2012.662957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Kachroo P, Ivanov I, Davidson LA, Chowdhary BP, Lupton JR, Chapkin RS. Classification of diet-modulated gene signatures at the colon cancer initiation and progression stages. Dig Dis Sci 2011; 56:2595-604. [PMID: 21409376 PMCID: PMC3139012 DOI: 10.1007/s10620-011-1652-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/16/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND The effects of dietary polyunsaturated (PUFAs) and monounsaturated fatty acids (MUFAs) on intestinal cytokinetics within the context of colon cancer initiation and progression have been extensively studied. n-3 PUFAs have received the most attention due to their potential protective role. However, further investigation of the epigenetic perturbations caused by fatty acids in the context of colon cancer development is needed. METHODS We used DNA microarrays to identify discriminative gene signatures (gene combinations) for the purpose of classifying n-3 PUFA-fed, carcinogen-injected, Sprague-Dawley rats at the initiation and progression stages. Animals were assigned to three dietary treatments differing only in the type of fat (corn oil/n-6 PUFA, fish oil/n-3 PUFA, or olive oil/n-9 monounsaturated fatty acid). RESULTS The effects of diet on colonic mucosal gene expression signatures during tumor initiation and progression were subsequently compared (12 h and 10 weeks after azoxymethane injection). Microarray analysis revealed that the number of differentially expressed (DE) genes in each of the three diet comparisons increased with the progression of colon cancer. Each dietary lipid source exhibited its own unique transcriptional profile, as assessed by linear discriminant analysis. Applying this novel approach, we identified the single genes and the two- to three-gene combinations that best distinguished the dietary treatment groups. For the chemoprotective (fish oil) diet, mediators of stem cell homeostasis, e.g., ephrin B1 and bone morphogenic protein 4, were the top-performing gene classifiers. CONCLUSIONS These results suggest that dietary chemoprotective n-3 PUFA impact genes that regulate the colon stem cell niche and tumor evolution.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 422C VMR Bldg, College Station, TX 77843-4466, USA
| | - Laurie A. Davidson
- Program in Integrative Nutrition and Complex Diseases, Kleberg Center, Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843-2253, USA
| | - Bhanu P. Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Joanne R. Lupton
- Program in Integrative Nutrition and Complex Diseases, Kleberg Center, Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843-2253, USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Kleberg Center, Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843-2253, USA
| |
Collapse
|
18
|
Abstract
Tissue kallikrein cleaves kininogens to release kinins. Kinins mediate inflammation by activating constitutive bradykinin receptor-2 (BR2), which are rapidly desensitized, and induced by inflammatory cytokines bradykinin receptor-1 (BR1), resistant to desensitization. Intestinal tissue kallikrein (ITK) may hydrolyze growth factors and peptides, whereas kinins are responsible for capillary permeability, pain, synthesis of cytokines, and adhesion molecule-neutrophil cascade. Our and others results have demonstrated ITK in intestinal goblet cells and its release into interstitial space during inflammation. Kallistatin, an inhibitor of ITK, has been shown in epithelial and goblet cells, and was decreased in inflamed intestine as well as in plasma compared with noninflammatory controls. BR1 was upregulated in patients with inflammatory bowel disease (IBD), and it has expressed in an apical part of enterocytes in inflamed intestine, but in the basal part in normal intestine. ITK and BR1 were visualized in macrophages forming granuloma in Crohn's disease. In animal studies BR2 blockade decreased intestinal contraction, but had limited effect on inflammatory lesions. BR1 was found to be upregulated in animal inflamed intestine, in part dependent on tumor necrosis factor alpha (TNF-α). A selective BR1 receptor antagonist decreased morphological and biochemical features of experimental intestinal inflammation. Both BR1 and BR2 mediate epithelial ion transport that leads to secretory diarrhea. The upregulation of BR1 in inflamed intestine provides a structural basis for the kinins function, suggesting that a selective BR1 antagonist may have potential in therapeutic trial of IBD patients.
Collapse
Affiliation(s)
- Antoni Stadnicki
- Department of Basis Biomedical Sciences, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
19
|
Westermann D, Lettau O, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschöpe C. Doxorubicin cardiomyopathy-induced inflammation and apoptosis are attenuated by gene deletion of the kinin B1 receptor. Biol Chem 2008; 389:713-8. [PMID: 18627295 DOI: 10.1515/bc.2008.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical use of the anthracycline doxorubicin (DOX) is limited by its cardiotoxic effects, which are attributed to the induction of apoptosis. To elucidate the possible role of the kinin B1 receptor (B1R) during the development of DOX cardiomyopathy, we studied B1R knockout mice (B1R(-/-)) by investigating cardiac inflammation and apoptosis after induction of DOX-induced cardiomyopathy. DOX control mice showed cardiac dysfunction measured by pressure-volume loops in vivo. This was associated with a reduced activation state of AKT, as well as an increased bax/bcl2 ratio in Western blots, indicating cardiac apoptosis. Furthermore, mRNA levels of the proinflammatory cytokine interleukin 6 were increased in the cardiac tissue. In DOX B1R(-/-) mice, cardiac dysfunction was improved compared to DOX control mice, which was associated with normalization of the bax/bcl-2 ratio and interleukin 6, as well as AKT activation state. These findings suggest that B1R is detrimental in DOX cardiomyopathy in that it mediates the inflammatory response and apoptosis. These insights might have useful implications for future studies utilizing B1R antagonists for treatment of human DOX cardiomyopathy.
Collapse
Affiliation(s)
- Dirk Westermann
- Charité-Universitätsmedizin Berlin, Department of Cardiology and Pneumology, Campus Benjamin Franklin, D-12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Hara DB, Fernandes ES, Campos MM, Calixto JB. Pharmacological and biochemical characterization of bradykinin B2 receptors in the mouse colon: Influence of the TNBS-induced colitis. ACTA ACUST UNITED AC 2007; 141:25-34. [PMID: 17276525 DOI: 10.1016/j.regpep.2006.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 12/08/2006] [Accepted: 12/16/2006] [Indexed: 10/23/2022]
Abstract
This study analyzed bradykinin (BK)-evoked contractile responses in the mouse colon under normal and inflammatory conditions. BK and the preferential B(2) receptor agonists Hyp(3)-BK, Lys-BK, Met-Lys-BK and Tyr(8)-BK produced a marked and concentration-related contraction of the normal mouse colon, whereas the selective B(1) receptor agonist des-Arg(9)-BK had no effect. BK-induced contraction was concentration-dependently antagonized (in a non-competitive manner) by both B(2) receptor antagonists Hoe 140 and FR173657, but not the B(1) receptor antagonist des-Arg(9)-[Leu(8)]-BK. Analysis of the possible mechanisms implicated in the contractile responses of BK in the mouse colon revealed the involvement of the neural release of acetylcholine, the activation of L- and N-type voltage-gated calcium channels, and the release of neuropeptides, prostanoids and leukotrienes. The contraction induced by BK was markedly increased in preparations obtained from TNBS-treated mice. The up-regulation of B(2) receptors following the induction of colitis was confirmed with binding studies using [(3)H]-BK, which revealed a marked increase in B(2) receptor densities, without alterations of affinity. We provide convincing evidence on the relevance of B(2) receptors in the mouse colon under normal conditions, as well as under an inflammatory profile of colitis. Selective B(2) receptor antagonists might well represent rational therapeutic options for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Daniela Balz Hara
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|