1
|
Garg A, Lim JK. A Pocket Guide to CCR5-Neurotropic Flavivirus Edition. Viruses 2023; 16:28. [PMID: 38257729 PMCID: PMC10820758 DOI: 10.3390/v16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
CCR5 is among the most studied chemokine receptors due to its profound significance in human health and disease. The notion that CCR5 is a functionally redundant receptor was challenged through the demonstration of its unique protective role in the context of West Nile virus in both mice and humans. In the nearly two decades since this initial discovery, numerous studies have investigated the role of CCR5 in the context of other medically important neurotropic flaviviruses, most of which appear to support a broad neuroprotective role for this receptor, although how CCR5 exerts its protective effect has been remarkably varied. In this review, we summarize the mechanisms by which CCR5 controls neurotropic flaviviruses, as well as results from human studies evaluating a genetic link to CCR5, and propose unexplored areas of research that are needed to unveil even more exciting roles for this important receptor.
Collapse
Affiliation(s)
| | - Jean K. Lim
- Department of Microbiology, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA;
| |
Collapse
|
2
|
P2X7-deficiency improves plasticity and cognitive abilities in a mouse model of Tauopathy. Prog Neurobiol 2021; 206:102139. [PMID: 34391810 DOI: 10.1016/j.pneurobio.2021.102139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid β (Aβ) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aβ-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aβ and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies.
Collapse
|
3
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
4
|
CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2019; 109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/04/2023]
Abstract
Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.
Collapse
|
5
|
Umansky V, Blattner C, Gebhardt C, Utikal J. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunol Immunother 2017; 66:1015-1023. [PMID: 28382399 PMCID: PMC11029643 DOI: 10.1007/s00262-017-1988-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, leading to the accumulation of myeloid-derived suppressor cells (MDSCs). Using ret transgenic mouse melanoma model, we found a significant migration of MDSCs expressing C-C chemokine receptor (CCR)5 into primary tumors and metastatic lymph nodes, which was correlated with tumor progression. An increased CCR5 expression on MDSCs was associated with elevated concentrations of CCR5 ligands in melanoma microenvironment. In vitro experiments showed that the upregulation of CCR5 expression on CD11b+Gr1+ immature myeloid cells was induced by CCR5 ligands, IL-6, GM-CSF, and other inflammatory factors. Furthermore, CCR5+ MDSCs infiltrating melanoma lesions displayed a stronger immunosuppressive pattern than their CCR5- counterparts. Targeting CCR5/CCR5 ligand signaling via a fusion protein mCCR5-Ig, which selectively binds and neutralizes all three CCR5 ligands, increased the survival of tumor-bearing mice. This was associated with a reduced migration and immunosuppressive potential of tumor MDSCs. In melanoma patients, circulating CCR5+ MDSCs were increased as compared to healthy donors. Like in melanoma-bearing mice, we observed an enrichment of these cells and CCR5 ligands in tumors as compared to the peripheral blood. Our findings define a critical role for CCR5 not only in the recruitment but also in the activation of MDSCs in tumor lesions, suggesting that novel strategies of melanoma treatment could be based on blocking CCR5/CCR5 ligand interactions.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.
| | - Carolin Blattner
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
6
|
Halvorsen EC, Hamilton MJ, Young A, Wadsworth BJ, LePard NE, Lee HN, Firmino N, Collier JL, Bennewith KL. Maraviroc decreases CCL8-mediated migration of CCR5(+) regulatory T cells and reduces metastatic tumor growth in the lungs. Oncoimmunology 2016; 5:e1150398. [PMID: 27471618 DOI: 10.1080/2162402x.2016.1150398] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023] Open
Abstract
Regulatory T cells (Tregs) play a crucial physiological role in the regulation of immune homeostasis, although recent data suggest Tregs can contribute to primary tumor growth by suppressing antitumor immune responses. Tregs may also influence the development of tumor metastases, although there is a paucity of information regarding the phenotype and function of Tregs in metastatic target organs. Herein, we demonstrate that orthotopically implanted metastatic mammary tumors induce significant Treg accumulation in the lungs, which is a site of mammary tumor metastasis. Tregs in the primary tumor and metastatic lungs express high levels of C-C chemokine receptor type 5 (CCR5) relative to Tregs in the mammary fat pad and lungs of tumor-free mice, and Tregs in the metastatic lungs are enriched for CCR5 expression in comparison to other immune cell populations. We also identify that C-C chemokine ligand 8 (CCL8), an endogenous ligand of CCR5, is produced by F4/80(+) macrophages in the lungs of mice with metastatic primary tumors. Migration of Tregs toward CCL8 ex vivo is reduced in the presence of the CCR5 inhibitor Maraviroc. Importantly, treatment of mice with Maraviroc (MVC) reduces the level of CCR5(+) Tregs and metastatic tumor burden in the lungs. This work provides evidence of a CCL8/CCR5 signaling axis driving Treg recruitment to the lungs of mice bearing metastatic primary tumors, representing a potential therapeutic target to decrease Treg accumulation and metastatic tumor growth.
Collapse
Affiliation(s)
- E C Halvorsen
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - M J Hamilton
- Integrative Oncology Department, British Columbia Cancer Agency , Vancouver, BC, Canada
| | - A Young
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - B J Wadsworth
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - N E LePard
- Integrative Oncology Department, British Columbia Cancer Agency , Vancouver, BC, Canada
| | - H N Lee
- Integrative Oncology Department, British Columbia Cancer Agency , Vancouver, BC, Canada
| | - N Firmino
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - J L Collier
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K L Bennewith
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Martin-Blondel G, Brassat D, Bauer J, Lassmann H, Liblau RS. CCR5 blockade for neuroinflammatory diseases — beyond control of HIV. Nat Rev Neurol 2016; 12:95-105. [DOI: 10.1038/nrneurol.2015.248] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Ward ST, Li KK, Hepburn E, Weston CJ, Curbishley SM, Reynolds GM, Hejmadi RK, Bicknell R, Eksteen B, Ismail T, Rot A, Adams DH. The effects of CCR5 inhibition on regulatory T-cell recruitment to colorectal cancer. Br J Cancer 2014; 112:319-28. [PMID: 25405854 PMCID: PMC4301825 DOI: 10.1038/bjc.2014.572] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/02/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Regulatory T cells (Treg) are enriched in human colorectal cancer (CRC) where they suppress anti-tumour immunity. The chemokine receptor CCR5 has been implicated in the recruitment of Treg from blood into CRC and tumour growth is delayed in CCR5-/- mice, associated with reduced tumour Treg infiltration. METHODS Tissue and blood samples were obtained from patients undergoing resection of CRC. Tumour-infiltrating lymphocytes were phenotyped for chemokine receptors using flow cytometry. The presence of tissue chemokines was assessed. Standard chemotaxis and suppression assays were performed and the effects of CCR5 blockade were tested in murine tumour models. RESULTS Functional CCR5 was highly expressed by human CRC infiltrating Treg and CCR5(high) Treg were more suppressive than their CCR5(low) Treg counterparts. Human CRC-Treg were more proliferative and activated than other T cells suggesting that local proliferation could provide an alternative explanation for the observed tumour Treg enrichment. Pharmacological inhibition of CCR5 failed to reduce tumour Treg infiltration in murine tumour models although it did result in delayed tumour growth. CONCLUSIONS CCR5 inhibition does not mediate anti-tumour effects as a consequence of inhibiting Treg recruitment. Other mechanisms must be found to explain this effect. This has important implications for anti-CCR5 therapy in CRC.
Collapse
Affiliation(s)
- S T Ward
- Centre for Liver Research & NIHR Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - K K Li
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - E Hepburn
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - C J Weston
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - S M Curbishley
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - G M Reynolds
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - R K Hejmadi
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2WW, UK
| | - R Bicknell
- Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - B Eksteen
- Snyder Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - T Ismail
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2WW, UK
| | - A Rot
- Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - D H Adams
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Amsellem V, Lipskaia L, Abid S, Poupel L, Houssaini A, Quarck R, Marcos E, Mouraret N, Parpaleix A, Bobe R, Gary-Bobo G, Saker M, Dubois-Randé JL, Gladwin MT, Norris KA, Delcroix M, Combadière C, Adnot S. CCR5 as a treatment target in pulmonary arterial hypertension. Circulation 2014; 130:880-891. [PMID: 24993099 DOI: 10.1161/circulationaha.114.010757] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PH), whether idiopathic or related to underlying diseases such as HIV infection, results from complex vessel remodeling involving both pulmonary artery smooth muscle cell (PA-SMC) proliferation and inflammation. CCR5, a coreceptor for cellular HIV-1 entry expressed on macrophages and vascular cells, may be involved in the pathogenesis of PH. Maraviroc is a new CCR5 antagonist designed to block HIV entry. METHODS AND RESULTS Marked CCR5 expression was found in lungs from patients with idiopathic PH, in mice with hypoxia-induced PH, and in Simian immunodeficiency virus-infected macaques, in which it was localized chiefly in the PA-SMCs. To assess the role for CCR5 in experimental PH, we used both gene disruption and pharmacological CCR5 inactivation in mice. Because maraviroc does not bind to murine CCR5, we used human-CCR5ki mice for pharmacological and immunohistochemical studies. Compared with wild-type mice, CCR5-/- mice or human-CCR5ki mice treated with maraviroc exhibited decreased PA-SMC proliferation and recruitment of perivascular and alveolar macrophages during hypoxia exposure. CCR5-/- mice reconstituted with wild-type bone marrow cells and wild-type mice reconstituted with CCR5-/- bone marrow cells were protected against PH, suggesting CCR5-mediated effects on PA-SMCs and macrophage involvement. The CCR5 ligands CCL5 and the HIV-1 gp120 protein increased intracellular calcium and induced growth of human and human-CCR5ki mouse PA-SMCs; maraviroc inhibited both effects. Maraviroc also reduced the growth-promoting effects of conditioned media from CCL5-activated macrophages derived from human-CCR5ki mice on PA-SMCs from wild-type mice. CONCLUSION The CCL5-CCR5 pathway represents a new therapeutic target in PH associated with HIV or with other conditions.
Collapse
Affiliation(s)
- Valérie Amsellem
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Larissa Lipskaia
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Shariq Abid
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Lucie Poupel
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Amal Houssaini
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Rozenn Quarck
- Respiratory Division, University Hospitals of Leuven and Department of Clinical and Experimental Medicine, University of Leuven, Belgium
| | - Elisabeth Marcos
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Nathalie Mouraret
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Aurélien Parpaleix
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Régis Bobe
- Université Paris-Sud, Unité mixte de Recherche en Santé 770, Le Kremlin-Bicêtre, France
| | - Guillaume Gary-Bobo
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Mirna Saker
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| | - Jean-Luc Dubois-Randé
- Service de Cardiologie, Hôpital Henri Mondor, AP-HP, 94010, Créteil, France; Université Paris-Est Créteil (UPEC)
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, UPMC, Pittsburgh, PA
| | - Karen A Norris
- Heart, Lung, Blood and Vascular, University of Pittsburgh, Pittsburgh, PA
| | - Marion Delcroix
- Respiratory Division, University Hospitals of Leuven and Department of Clinical and Experimental Medicine, University of Leuven, Belgium
| | - Christophe Combadière
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,Inserm, U1135, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France.,CNRS, ERL 8255, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France
| | - Serge Adnot
- Inserm U955 and Département de Physiologie, Hôpital Henri Mondor, Créteil, France, Université Paris-Est Créteil (UPEC), France
| |
Collapse
|
10
|
The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 2013; 352:36-53. [PMID: 24141062 DOI: 10.1016/j.canlet.2013.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
Abstract
Chemokines and their receptors regulate the trafficking of leukocytes in hematopoiesis and inflammation, and thus are fundamental to the immune integrity of the host. In parallel, members of the chemokine system exert a large variety of functions that dictate processes of cancer development and progression. Chemokines can act as pro-tumoral or anti-tumoral regulators of malignancy by affecting cells of the tumor microenvironment (leukocytes, endothelial cells, fibroblasts) and the tumor cells themselves (migration, invasion, proliferation, resistance to chemotherapy). Several of the chemokines are generally skewed towards the cancer-promoting direction, including primarily the CCR5-CCL5 (RANTES) and the CXCR4-CXCL12 (SDF-1) axes. This review provides a general view of chemokines and chemokine receptors as regulators of malignancy, describing their multi-faceted activities in cancer. The tumor-promoting activities of the CCR5-CCL5 and CXCR4-CXCL12 pathways are enlightened, emphasizing their potential use as targets for personalized therapy. Indeed, novel blockers of chemokines and their receptors are constantly emerging, and two chemokine receptor inhibitors were recently approved for clinical use: Maraviroc for CCR5 and Plerixafor for CXCR4. The review addresses ongoing pre-clinical and clinical trials using these modalities and others in cancer. Then, challenges and opportunities of personalized therapy directed against chemokines and their receptors in malignancy are discussed, demonstrating that such novel personalized cancer therapies hold many challenges, but also offer hope for cancer patients.
Collapse
|
11
|
Antibody and antiretroviral preexposure prophylaxis prevent cervicovaginal HIV-1 infection in a transgenic mouse model. J Virol 2013; 87:8535-44. [PMID: 23720722 DOI: 10.1128/jvi.00868-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capable of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible small-animal model to rapidly measure viral entry. Here, we report the generation of a human CD4- and human CCR5-expressing transgenic luciferase reporter mouse that facilitates measurement of peritoneal and genitomucosal HIV-1 pseudovirus entry in vivo. We show that antibodies and antiretrovirals mediate preexposure protection in this mouse model and that the serum antibody concentration required for protection from cervicovaginal infection is comparable to that required to protect macaques. Our results suggest that this system represents a model for the preclinical evaluation of prophylactic or vaccine candidates. It further supports the idea that broadly neutralizing antibodies should be evaluated for use as preexposure prophylaxis in clinical trials.
Collapse
|
12
|
Alonzo F, Kozhaya L, Rawlings SA, Reyes-Robles T, DuMont AL, Myszka DG, Landau NR, Unutmaz D, Torres VJ. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 2012; 493:51-5. [PMID: 23235831 PMCID: PMC3536884 DOI: 10.1038/nature11724] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Pore-forming toxins are critical virulence factors for many bacterial pathogens and are central to Staphylococcus aureus-mediated killing of host cells. S. aureus encodes pore-forming bi-component leukotoxins that are toxic towards neutrophils, but also specifically target other immune cells. Despite decades since the first description of staphylococcal leukocidal activity, the host factors responsible for the selectivity of leukotoxins towards different immune cells remain unknown. Here we identify the human immunodeficiency virus (HIV) co-receptor CCR5 as a cellular determinant required for cytotoxic targeting of subsets of myeloid cells and T lymphocytes by the S. aureus leukotoxin ED (LukED). We further demonstrate that LukED-dependent cell killing is blocked by CCR5 receptor antagonists, including the HIV drug maraviroc. Remarkably, CCR5-deficient mice are largely resistant to lethal S. aureus infection, highlighting the importance of CCR5 targeting in S. aureus pathogenesis. Thus, depletion of CCR5(+) leukocytes by LukED suggests a new immune evasion mechanism of S. aureus that can be therapeutically targeted.
Collapse
Affiliation(s)
- Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol 2011; 85:7582-93. [PMID: 21593172 DOI: 10.1128/jvi.00537-11] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent iPrEx clinical trial results provided evidence that systemic preexposure prophylaxis (PrEP) with emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) can partially prevent rectal HIV transmission in humans. Similarly, we have previously demonstrated that systemic administration of the same FTC-TDF combination efficiently prevented rectal transmission in humanized bone marrow/liver/thymus (BLT) mice. The CAPRISA 004 trial recently demonstrated that topical application of the tenofovir could partially prevent vaginal HIV-1 transmission in humans. To further validate the usefulness of the BLT mouse model for testing HIV prevention strategies, we evaluated the topical administration of tenofovir as used in CAPRISA 004 to prevent vaginal HIV transmission in BLT mice. Our results demonstrate that vaginally administered 1% tenofovir significantly reduced HIV transmission in BLT mice (P = 0.002). Together with the results obtained after systemic antiretroviral PrEP, these topical inhibitor data serve to validate the use of humanized BLT mice to evaluate both systemic and topical inhibitors of HIV transmission. Based on these observations, we tested six additional microbicide candidates for their ability to prevent vaginal HIV transmission: a C-peptide fusion inhibitor (C52L), a membrane-disrupting amphipathic peptide inhibitor (C5A), a trimeric d-peptide fusion inhibitor (PIE12-Trimer), a combination of reverse transcriptase inhibitors (FTC-TDF), a thioester zinc finger inhibitor (TC247), and a small-molecule Rac inhibitor (NSC23766). No protection was seen with the Rac inhibitor NSC23766. The thioester compound TC247 offered partial protection. Significant protection was afforded by FTC-TDF, and complete protection was offered by three different peptide inhibitors tested. Our results demonstrate that these effective topical inhibitors have excellent potential to prevent vaginal HIV transmission in humans.
Collapse
|
14
|
Sorce S, Myburgh R, Krause KH. The chemokine receptor CCR5 in the central nervous system. Prog Neurobiol 2010; 93:297-311. [PMID: 21163326 DOI: 10.1016/j.pneurobio.2010.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 02/04/2023]
Abstract
The expression and the role of the chemokine receptor CCR5 have been mainly studied in the context of HIV infection. However, this protein is also expressed in the brain, where it can be crucial in determining the outcome in response to different insults. CCR5 expression can be deleterious or protective in controlling the progression of certain infections in the CNS, but it is also emerging that it could play a role in non-infectious diseases. In particular, it appears that, in addition to modulating immune responses, CCR5 can influence neuronal survival. Here, we summarize the present knowledge about the expression of CCR5 in the brain and highlight recent findings suggesting its possible involvement in neuroprotective mechanisms.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
15
|
Riddick NE, Hermann EA, Loftin LM, Elliott ST, Wey WC, Cervasi B, Taaffe J, Engram JC, Li B, Else JG, Li Y, Hahn BH, Derdeyn CA, Sodora DL, Apetrei C, Paiardini M, Silvestri G, Collman RG. A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor use in vivo. PLoS Pathog 2010; 6:e1001064. [PMID: 20865163 PMCID: PMC2928783 DOI: 10.1371/journal.ppat.1001064] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/22/2010] [Indexed: 11/19/2022] Open
Abstract
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.
Collapse
Affiliation(s)
- Nadeene E. Riddick
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emilia A. Hermann
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lamorris M. Loftin
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sarah T. Elliott
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Winston C. Wey
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Barbara Cervasi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica Taaffe
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Engram
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bing Li
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James G. Else
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cynthia A. Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Donald L. Sodora
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Cristian Apetrei
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Mirko Paiardini
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, Dubois-Dauphin M, Krause KH. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 2010; 160:311-21. [PMID: 20423342 DOI: 10.1111/j.1476-5381.2010.00697.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. EXPERIMENTAL APPROACH Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. KEY RESULTS The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. CONCLUSIONS AND IMPLICATIONS Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1-2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs.
Collapse
Affiliation(s)
- S Sorce
- Department of Pathology and Immunology, University of Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To present recent information on the evolution of coreceptor use from CCR5 alone to CCR5 and CXCR4, the impact CCR5 inhibitors have on this process, and new insights into HIV-1 binding to CD4 and CCR5. RECENT FINDINGS The findings that are summarized include resistance to CCR5 inhibitors, genotypic predictors of coreceptor use, the link between coreceptor use and cell tropism, and new data on CCR5 structure and function. SUMMARY Resistance to CCR5 inhibitors is uncommon, and frequently involves selection of minor populations of R5X4 virus. Genotypic predictors of coreceptor use need to take into account the entire envelope sequence, not just V3. Genetic polymorphisms in humans that affect CCR5 or chemokines that bind CCR5 affect not only virus entry but also immune reconstitution.
Collapse
|
18
|
Effects of Blocking the Chemokine Receptors, CCR5 and CXCR3, With TAK-779 in a Rat Small Intestinal Transplantation Model. Transplantation 2008; 86:1810-7. [DOI: 10.1097/tp.0b013e31818fe7fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Wijtmans M, Verzijl D, Leurs R, de Esch IJ, Smit M. Towards Small-Molecule CXCR3 Ligands with Clinical Potential. ChemMedChem 2008; 3:861-72. [DOI: 10.1002/cmdc.200700365] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|