1
|
Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S. Anti-Depressant Fluoxetine Reveals its Therapeutic Effect Via Astrocytes. EBioMedicine 2018; 32:72-83. [PMID: 29887330 PMCID: PMC6020856 DOI: 10.1016/j.ebiom.2018.05.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
Although psychotropic drugs act on neurons and glial cells, how glia respond, and whether glial responses are involved in therapeutic effects are poorly understood. Here, we show that fluoxetine (FLX), an anti-depressant, mediates its anti-depressive effect by increasing the gliotransmission of ATP. FLX increased ATP exocytosis via vesicular nucleotide transporter (VNUT). FLX-induced anti-depressive behavior was decreased in astrocyte-selective VNUT-knockout mice or when VNUT was deleted in mice, but it was increased when astrocyte-selective VNUT was overexpressed in mice. This suggests that VNUT-dependent astrocytic ATP exocytosis has a critical role in the therapeutic effect of FLX. Released ATP and its metabolite adenosine act on P2Y11 and adenosine A2b receptors expressed by astrocytes, causing an increase in brain-derived neurotrophic factor in astrocytes. These findings suggest that in addition to neurons, FLX acts on astrocytes and mediates its therapeutic effects by increasing ATP gliotransmission. Anti-depressant FLX acts on astrocytes and increases VNUT-dependent ATP exocytosis. Such astrocytic responses are responsible for the FLX-induced therapeutic effects. Astrocytic ATP and its metabolite adenosine increase BDNF in astrocytes, and reveal the therapeutic effects.
Kinoshita et al. demonstrated that astrocytes are a therapeutic target of the antidepressant, fluoxetine (FLX). They found that FLX stimulates VNUT-dependent ATP release from astrocytes leading to a BDNF-mediated anti-depressive effect. This study demonstrated the astrocytic regulation of this anti-depressive effect, which complements the previously described conventional mechanism of FLX. Because the involvement of astrocytes in the pathogenesis of depression is of current interest, this new insight into the role of astrocytes in anti-depressive effects should support the establishment of novel therapeutic strategies for depression.
Collapse
Affiliation(s)
- Manao Kinoshita
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kayoko Fujishita
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Akiko Takeda
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Ha Pham Ngoc Le
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hideaki Hayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.
| |
Collapse
|
2
|
Ishidao T, Fueta Y, Ueno S, Yoshida Y, Hori H. A cross-fostering analysis of bromine ion concentration in rats that inhaled 1-bromopropane vapor. J Occup Health 2016; 58:241-6. [PMID: 27108641 PMCID: PMC5356948 DOI: 10.1539/joh.15-0284-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: Inhaled 1-bromopropane decomposes easily and releases bromine ion. However, the kinetics and transfer of bromine ion into the next generation have not been clarified. In this work, the kinetics of bromine ion transfer to the next generation was investigated by using cross-fostering analysis and a one-compartment model. Methods: Pregnant Wistar rats were exposed to 700 ppm of 1-bromopropane vapor for 6 h per day during gestation days (GDs) 1-20. After birth, cross-fostering was performed between mother exposure groups and mother control groups, and the pups were subdivided into the following four groups: exposure group, postnatal exposure group, gestation exposure group, and control group. Bromine ion concentrations in the brain were measured temporally. Results: Bromine ion concentrations in mother rats were lower than those in virgin rats, and the concentrations in fetuses were higher than those in mothers on GD20. In the postnatal period, the concentrations in the gestation exposure group decreased with time, and the biological half-life was 3.1 days. Conversely, bromine ion concentration in the postnatal exposure group increased until postnatal day 4 and then decreased. This tendency was also observed in the exposure group. A one-compartment model was applied to analyze the behavior of bromine ion concentration in the brain. By taking into account the increase of body weight and change in the bromine ion uptake rate in pups, the bromine ion concentrations in the brains of the rats could be estimated with acceptable precision.
Collapse
Affiliation(s)
- Toru Ishidao
- Department of Environmental Management, School of Health Sciences, University of Occupational and Environmental Health
| | | | | | | | | |
Collapse
|
3
|
KANEMITSU M, FUETA Y, ISHIDAO T, AOU S, HORI H. Development of a direct exposure system for studying the mechanisms of central neurotoxicity caused by volatile organic compounds. INDUSTRIAL HEALTH 2015; 54:42-49. [PMID: 26320726 PMCID: PMC4791292 DOI: 10.2486/indhealth.2015-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Many volatile organic compounds (VOCs) used in work places are neurotoxic. However, it has been difficult to study the cellular mechanisms induced by a direct exposure to neurons because of their high volatility. The objective of this study was to establish a stable system for exposing brain slices to VOCs. With a conventional recording system for brain slices, it is not possible to keep a constant bath concentration of relatively highly volatile solvents, e.g. 1-bromopropane (1-BP). Here we report a new exposure system for VOCs that we developed in which a high concentration of oxygen is dissolved to a perfused medium applying a gas-liquid equilibrium, and in which the tubing is made of Teflon, non adsorptive material. Using our system, the bath concentration of the perfused 1-BP remained stable for at least 2 h in the slice chamber. Both 6.4 and 2.2 mM of 1-BP did not change the paired-pulse response, but fully suppressed long-term potentiation in the dentate gyrus (DG) of hippocampal slices obtained from rats, suggesting that 1-BP decreases synaptic plasticity in the DG at the concentrations tested. Our new system can be applicable for investigating the underlying mechanisms of the neurotoxicity of VOCs at the cellular level.
Collapse
Affiliation(s)
- Masanari KANEMITSU
- Department of Environmental Management and Control, School of
Health Sciences, University of Occupational and Environmental Health, Japan
- Department of Brain Science and Engineering, Graduate School
of Life Science and Systems Engineering, Kyushu Institute of Technology, Japan
| | - Yukiko FUETA
- Department of Environmental Management and Control, School of
Health Sciences, University of Occupational and Environmental Health, Japan
| | - Toru ISHIDAO
- Department of Environmental Management and Control, School of
Health Sciences, University of Occupational and Environmental Health, Japan
| | - Shuji AOU
- Department of Brain Science and Engineering, Graduate School
of Life Science and Systems Engineering, Kyushu Institute of Technology, Japan
| | - Hajime HORI
- Department of Environmental Management and Control, School of
Health Sciences, University of Occupational and Environmental Health, Japan
| |
Collapse
|
4
|
Zhang L, Nagai T, Yamada K, Ibi D, Ichihara S, Subramanian K, Huang Z, Mohideen SS, Naito H, Ichihara G. Effects of sub-acute and sub-chronic inhalation of 1-bromopropane on neurogenesis in adult rats. Toxicology 2012; 304:76-82. [PMID: 23266320 DOI: 10.1016/j.tox.2012.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE 1-Bromopropane (1-BP) intoxication is associated with depression and cognitive and memory deficits. The present study tested the hypothesis that 1-BP suppresses neurogenesis in the dentate gyrus, which is involved in higher cerebral function, in adult rats. METHODS Four groups of 12 male Wistar rats were exposed to 0, 400, 800, 1000 ppm 1-BP, 8 h/day for 7 days. Another four groups of six rats each were exposed to 0, 400, 800 and 1000 ppm 1-BP for 2 weeks followed by 0, 200, 400 and 800 ppm for another 2 weeks, respectively. Another four groups of six rats each were exposed to 0, 200, 400 and 800 ppm 1-BP for 4 weeks. Rats were injected with 5-bromo-2'-deoxy-uridine (BrdU) after 4-week exposure at 1000/800 ppm to examine neurogenesis in the dentate gyrus by immunostaining. We measured factors known to affect neurogenesis, including monoamine levels, and mRNA expression levels of brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), in different brain regions. RESULTS BrdU-positive cells were significantly lower in the 800/1000 ppm-4-week group than the control. 1-Week exposure to 1-BP at 800 and 1000 ppm significantly reduced noradrenalin level in the striatum. Four-week exposure at 800 ppm significantly decreased noradrenalin levels in the hippocampus, prefrontal cortex and striatum. 1-BP also reduced hippocampal BDNF and GR mRNA levels. CONCLUSION Long-term exposure to 1-BP decreased neurogenesis in the dentate gyrus. Downregulation of BDNF and GR mRNA expression and low hippocampal norepinephrine levels might contribute, at least in part, to the reduced neurogenesis.
Collapse
Affiliation(s)
- Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|