1
|
Kumar S, Parveen S, Swaroop S, Banerjee M. TNF-α and MMPs mediated mucus hypersecretion induced by cigarette smoke: An in vitro study. Toxicol In Vitro 2023; 92:105654. [PMID: 37495164 DOI: 10.1016/j.tiv.2023.105654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Cigarette smoke is one of the leading causes of oxidative stress due to high levels of free radicals, which in turn leads to the degradation of alveolar cell walls and development of emphysema. Cigarette smoking has been linked to chronic bronchitis, Chronic Obstructive Pulmonary Disease (COPD) and lung cancer as well. The aim of the present study was to observe the effect of cigarette smoke extract (CSE) on TNF-α and MMPs mediated mucus hypersecretion in A549 cell line. The MTT experiments showed that CSE caused a dose-dependent decline in the level of viability of A549 cells. In addition, AO/PI and Mitotracker Red staining assays demonstrated that CSE caused the A549 cells to undergo apoptosis. This was determined by observing the reduction in mitochondrial membrane potential. CSE was found to be responsible for the formation of intracellular ROS, which was observed by DCFDA staining through fluorescence microscopy. Approximately 65% migration rate was decreased in 20% CSE exposed cells. CSE exposure led to the significantly increased mRNA levels of TNF-α, MMP-7, and MMP-12, in comparison to the control cells. Additionally, the expression of MUC5AC and MUC5B was provoked by CSE as well. Human epithelial cells are stimulated by TNF-α and MMPs secreted mucus, as shown by expression of MUC5AC and MUC5B. CSE could induce mucus in lungs through TNF-α and MMPs mediated pathways.
Collapse
Affiliation(s)
- Saurabh Kumar
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India
| | - Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Suchit Swaroop
- Experimental and Public Health Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India.
| |
Collapse
|
2
|
The Tobacco Smoke Component, Acrolein, as a Major Culprit in Lung Diseases and Respiratory Cancers: Molecular Mechanisms of Acrolein Cytotoxic Activity. Cells 2023; 12:cells12060879. [PMID: 36980220 PMCID: PMC10047238 DOI: 10.3390/cells12060879] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer’s disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke’s most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.
Collapse
|
3
|
Yoon SH, Song MK, Kim DI, Lee JK, Jung JW, Lee JW, Lee K. Comparative study of lung toxicity of E-cigarette ingredients to investigate E-cigarette or vaping product associated lung injury. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130454. [PMID: 37055947 DOI: 10.1016/j.jhazmat.2022.130454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/19/2023]
Abstract
No comparative study has yet been performed on the respiratory effects of individual E-cigarette ingredients. Here, lung toxicity of individual ingredients of E-cigarette products containing nicotine or tetrahydrocannabinol was investigated. Mice were intratracheally administered propylene glycol (PG), vegetable glycerin (VG), vitamin E acetate (VEA), or nicotine individually for two weeks. Cytological and histological changes were noticed in PG- and VEA-treated mice that exhibited pathophysiological changes which were associated with symptoms seen in patients with symptoms of E-cigarette or Vaping Use-Associated Lung Injuries (EVALI) or E-cigarette users. Compared to potential human exposure situations, while the VEA exposure condition was similar to the dose equivalent of VEA content in E-cigarettes, the PG condition was about 47-137 times higher than the dose equivalent of the daily PG intake of E-cigarette users. These results reveal that VEA exposure is much more likely to cause problems related to EVALI in humans than PG. Transcriptomic analysis revealed that PG exposure was associated with fibrotic lung injury via the AKT signaling pathway and M2 macrophage polarization, and VEA exposure was associated with asthmatic airway inflammation via the mitogen-activated protein kinase signaling pathway. This study provides novel insights into the pathophysiological effects of individual ingredients of E-cigarettes.
Collapse
Affiliation(s)
- Sung-Hoon Yoon
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Mi-Kyung Song
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong Im Kim
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Jeom-Kyu Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Yu Q, Yang D, Chen X, Chen Q. CD147 increases mucus secretion induced by cigarette smoke in COPD. BMC Pulm Med 2019; 19:29. [PMID: 30727993 PMCID: PMC6364420 DOI: 10.1186/s12890-019-0791-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CD147 is expressed in many tissues and is involved in many inflammatory diseases. Emerging evidence suggests that the overproduction of mucus is a malignant factor in chronic obstructive pulmonary disease (COPD), which results in severe airway obstruction and repeated airway infections. However, it is still unclear whether CD147 is involved in mucus production in COPD. METHODS We determined the expression levels of CD147 and MUC5AC by immunohistochemistry in 42 human lung specimens from three groups (non-smokers without COPD, smokers without COPD and smokers with COPD). For the in vitro experiment, human bronchial epithelial (HBE) cells were treated with cigarette smoke (CS) extract to establish a mucus secretion model; then, CD147 and MUC5AC production were detected by RT-PCR, Western blotting and ELISA. To determine how CD147 is involved in MUC5AC secretion, HBE cells were transfected with small interfering RNA to silence CD147 and pretreated with inhibitors of MMP9 and p38 MAPK, which are common signaling molecules involved in MUC5AC secretion; then, MUC5AC expression was evaluated. RESULTS Compared with the expression levels in the non-smokers and smokers without COPD, CD147 and MUC5AC expression levels were higher in the smokers with COPD. In the in vitro experiment, CD147 and MUC5AC expression levels were significantly increased after CS extract incubation compared with those after no treatment. Silencing CD147 by siRNA decreased the CS extract-induced MUC5AC secretion and MMP9 and phosphorylated p38 MAPK production. In addition, inhibiting MMP9 or p38 MAPK decreased the CS extract-induced MUC5AC secretion. CONCLUSIONS In lung specimens, CD147 and MUC5AC expression levels were increased in COPD patients. Increased CD147 levels induced by CS extract could stimulate MUC5AC secretion through the MMP9 and p38 MAPK signaling pathway in HBE cells. Therefore, the regulation of CD147 could be a promising target for mucus hypersecretion in COPD.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya of Central South University, Changsha, 410008, Hunan, China
| | - Qiong Chen
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Cao L, Liu F, Liu Y, Liu T, Wu J, Zhao J, Wang J, Li S, Xu J, Dong L. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast. Exp Lung Res 2018; 44:288-301. [PMID: 30428724 DOI: 10.1080/01902148.2018.1536175] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Thymic stromal lymphopoietin (TSLP) acts as a critical cytokine involved in asthmatic airway remodeling. Our study aimed to characterize the crosstalk between airway epithelial cells and fibroblasts regulated by TSLP through the signaling pathways of Mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MATERIALS AND METHODS Human biopsy specimens and lung tissues from mice were stained with hematoxylin and eosin (H&E) and immunohistochemistry. Human lung fibroblasts were stimulated with human recombinant TSLP. The protein expression of phosphorylation of STAT3 (p-STAT3) and phosphorylation of MAPK as well as the expression of collagen I and alpha-smooth muscle actin (α-SMA) were detected by Western blotting and immunofluorescence. Co-culture was performed to detect the influence of TSLP secreted by airway epithelial cells on fibroblasts. An ovalbumin (OVA)-induced asthmatic murine model was established with or without intraperitoneal injection of SB203580 (inhibitor of p-38). Protein expression in lung tissue was detected by immunohistochemistry and western blotting. RESULT TSLP could activate MAPK in HLF-1. SB203580 could inhibit the activation of p38, attenuate phosphorylation of STAT3, and decrease the expression of collagen I and α-SMA consequently in human fibroblasts. Co-culture demonstrated that TSLP secreted by epithelial cells could promote the expression of collagen I and α-SMA and aggravates airway remodeling in fibroblasts. In vivo, expression of TSLP, collagen I, α-SMA, p-p38 and p-STAT3 was upregulated in airway tissue of OVA-challenged mice and downregulated in mice which were treated by SB203580. The tissue staining showed that airway structure change was attenuated by SB203580 compared with OVA challenged mice as well. CONCLUSIONS TSLP might promote asthmatic airway remodeling via p38 MAPK-STAT3 axis activation and the crosstalk between airway epithelial cells and fibroblasts could aggravate remodeling. Blockade of p38 could alleviate airway remodeling which might provide a new therapeutic target for asthma.
Collapse
Affiliation(s)
- Liuzhao Cao
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China.,b Department of Respiratory Medicine , Northern Jiangsu People's Hospital , Yangzhou , Jiangsu , People's Republic of China
| | - Fen Liu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China.,c Department of Respiratory Medicine , Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Yahui Liu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Tian Liu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jinxiang Wu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jiping Zhao
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Junfei Wang
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Shuo Li
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jiawei Xu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Liang Dong
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| |
Collapse
|
6
|
Guo L, Wang T, Wu Y, Yuan Z, Dong J, Li X, An J, Liao Z, Zhang X, Xu D, Wen FQ. WNT/β-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARδ/p38 pathway. J Transl Med 2016; 96:218-29. [PMID: 26322419 DOI: 10.1038/labinvest.2015.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/18/2015] [Accepted: 05/05/2015] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of WNT/β-catenin signaling involved in airway inflammation of chronic obstructive pulmonary disease (COPD) remain unknown, although recent observations have suggested an important contribution of the pathway in pulmonary parenchymal tissue repair and airway epithelium differentiation. We investigated the role of WNT/β-catenin signaling in cigarette smoke (CS)-related airway inflammation using patient lung tissues, human bronchial epithelial cells (16HBECs), and mouse models. Reduced activity of WNT/β-catenin signaling was observed in the airway epithelium of smokers with or without COPD. The mRNA expression of WNT transcription factor TCF4 negatively correlated with the pack year. The mRNA levels of WNT receptor FZD4 negatively correlated with the mRNA levels of IL-1β. CS exposure decreased the activity of WNT/β-catenin signaling in both 16HBECs and mice. In vitro studies demonstrated the upregulation of inflammatory cytokines TNF-α and IL-1β secretion induced by CS extract (CSE) could be attenuated by β-catenin activator SB216763 and be exacerbated by β-catenin small-interfering RNA (siRNA), respectively. Furthermore, the decrease in the expression of peroxisome proliferator-activated receptor (PPARδ) induced by CSE stimulation could be rescued by SB216763. SB216763 also attenuated the upregulation of phosphorylated p38 mitogen-activated protein kinase (MAPK) stimulated by CSE. Both PPARδ agonist and p38 MAPK inhibitor could suppress the TNF-α and IL-1β release induced by CSE treatment. In addition, PPARδ activation could abolish β-catenin siRNA-mediated aggravation of phosphorylated p38 MAPK in response to CSE. Finally, SB216763 treatment significantly ameliorated peribronchial inflammatory cell infiltration, leukocyte influx, and the release of TNF-α and IL-1β in the bronchoalveolar lavage fluid of CS-exposed mice. Taken together, our findings indicate that the reduced activity of WNT/β-catenin signaling induced by CS may promote inflammatory cytokine production in airway epithelium and have an essential role in airway inflammation in COPD by PPARδ/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lingli Guo
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanqiu Wu
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhicheng Yuan
- Department of Biological Science, College of Life Science, Sichuan University, Chengdu, China
| | - Jiajia Dong
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiao'ou Li
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing An
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zenglin Liao
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xue Zhang
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Fu-Qiang Wen
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Kim JH, Park DK, Lee CH, Yoon DY. A new isoflavone glycitein 7-O-beta-D-glucoside 4''-O-methylate, isolated from Cordyceps militaris grown on germinated soybeans extract, inhibits EGF-induced mucus hypersecretion in the human lung mucoepidermoid cells. Phytother Res 2012; 26:1807-12. [PMID: 22407817 DOI: 10.1002/ptr.4655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 12/11/2022]
Abstract
A new isoflavone glycitein 7-O-beta-d-glucoside 4''-O-methylate (CGLM) has been isolated recently from Cordyceps militaris grown on germinated soybean extract and has antioxidant activity. In the present study, CGLM was investigated for its suppression of airway mucous hyper-secretion in epidermal growth factor (EGF)-treated human lung mucoepidermoid cells. NCI-H292 cells were treated with CGLM for 1 h, followed by EGF treatment for 24 h. The decrease in cyclooxygenase-2 (COX-2) production was correlated with reduced levels of protein and mRNA of inducible matrix metalloproteinase 9 (MMP-9) and also MUC5AC gene expression. CGLM directly inhibited down-regulated NF-κB activity, and significantly inhibited the phosphorylation of p38 and ERK1/2 (p42/p44) in NCI-H292 cells. These results suggest that CGLM protects NCI-H292 cells from EGF-induced damage by down-regulation of COX-2, MMP-9 and MUC5AC gene expression, mediated via blocking the NF-kappa-B and p38/ERK MAPK pathways.
Collapse
Affiliation(s)
- Jung-Hee Kim
- Department of Bioscience and Biotechnology, BIMC, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Moretto N, Volpi G, Pastore F, Facchinetti F. Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci 2012; 1259:39-46. [PMID: 22758635 DOI: 10.1111/j.1749-6632.2012.06531.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acrolein (2-propenal) is a highly reactive α,β-unsaturated aldehyde and a respiratory irritant that is ubiquitously present in the environment but that can also be generated endogenously at sites of inflammation. Acrolein is abundant in tobacco smoke, which is the major environmental risk factor for chronic obstructive pulmonary disease (COPD), and elevated levels of acrolein are found in the lung fluids of COPD patients. Its high electrophilicity makes acrolein notorious for its facile reaction with biological nucleophiles, leading to the modification of proteins and DNA and depletion of antioxidant defenses. As a consequence, acrolein results in oxidative stress as well as altered intracellular signaling and gene transcription/translation. In pulmonary cells, acrolein, at subtoxic concentrations, can activate intracellular stress kinases, alter the production of inflammatory mediators and proteases, modify innate immune response, induce mucus hypersecretion, and damage airway epithelium. A better comprehension of the mechanisms underlying acrolein effects in the airways may suggest novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Nadia Moretto
- Department of Pharmacology, Chiesi Farmaceutici SpA, Parma, Italy
| | | | | | | |
Collapse
|
9
|
Abstract
Acrolein is a respiratory irritant that can be generated during cooking and is in environmental tobacco smoke. More plentiful in cigarette smoke than polycyclic aromatic hydrocarbons (PAH), acrolein can adduct tumor suppressor p53 (TP53) DNA and may contribute to TP53-mutations in lung cancer. Acrolein is also generated endogenously at sites of injury, and excessive breath levels (sufficient to activate metalloproteinases and increase mucin transcripts) have been detected in asthma and chronic obstructive pulmonary disease (COPD). Because of its reactivity with respiratory-lining fluid or cellular macromolecules, acrolein alters gene regulation, inflammation, mucociliary transport, and alveolar-capillary barrier integrity. In laboratory animals, acute exposures have lead to acute lung injury and pulmonary edema similar to that produced by smoke inhalation whereas lower concentrations have produced bronchial hyperreactivity, excessive mucus production, and alveolar enlargement. Susceptibility to acrolein exposure is associated with differential regulation of cell surface receptor, transcription factor, and ubiquitin-proteasome genes. Consequent to its pathophysiological impact, acrolein contributes to the morbidly and mortality associated with acute lung injury and COPD, and possibly asthma and lung cancer.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | |
Collapse
|
10
|
Petznick A, Evans MDM, Madigan MC, Garrett Q, Sweeney DF. A preliminary study of changes in tear film proteins in the feline eye following nictitating membrane removal. Vet Ophthalmol 2011; 15:164-71. [PMID: 22050623 DOI: 10.1111/j.1463-5224.2011.00955.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the influence of nictitating membrane (third eyelid) removal on selected proteins in feline tears. ANIMAL STUDIED Domestic short-haired cats (7-17 months; 2.6-5.2 kg) were used. PROCEDURES Eye-flush tears were collected periodically for up to 18 weeks from both eyes of animals with nictitating membranes removed, but nictitating gland left intact, (n = 4) or with nictitating membranes intact (n = 4). Tear comparisons were based on total protein content (TPC) using micro bicinchoninic acid assay, immunoglobulin A (IgA), and matrix-metalloproteinase (MMP)-9 measurements using sandwich enzyme-linked immunosorbent assay (ELISA) and tear gelatinase activity using gelatin zymography. Expression of MMP-2 and -9 in nictitating membranes removed at baseline (week 0) and eyes collected at 18 weeks were also investigated in histological sections using immunoperoxidase for visualization. RESULTS Nictitating membrane removal did not significantly change TPC and MMP-9 in tears within the first 4 weeks. MMP-9 was not detected by ELISA in tears from eyes without nictitating membranes from week 5 onwards. IgA (%IgA of TPC) data varied between animals. Gelatin zymography showed increased MMP-2 and -9 activity in tears from eyes without nictitating membranes at week 1 and a decrease following week 2 post-surgery. MMP-2 and -9 were immunolocalised to conjunctival goblet cells of removed nictitating membranes and to the conjunctival epithelium, respectively. After 18 weeks, the distribution of MMPs in tissue was comparable between eyes with and without nictitating membranes. CONCLUSIONS Based on this preliminary study, nictitating membrane removal appeared to cause long-term changes in expression of tear proteins, including reduced MMP-9 expression.
Collapse
|
11
|
Myers CR, Myers JM, Kufahl TD, Forbes R, Szadkowski A. The effects of acrolein on the thioredoxin system: implications for redox-sensitive signaling. Mol Nutr Food Res 2011; 55:1361-74. [PMID: 21812108 DOI: 10.1002/mnfr.201100224] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 02/04/2023]
Abstract
The reactive aldehyde acrolein is a ubiquitous environmental pollutant and is also generated endogenously. It is a strong electrophile and reacts rapidly with nucleophiles including thiolates. This review focuses on the effects of acrolein on thioredoxin reductase (TrxR) and thioredoxin (Trx), which are major regulators of intracellular protein thiol redox balance. Acrolein causes irreversible effects on TrxR and Trx, which are consistent with the formation of covalent adducts to selenocysteine and cysteine residues that are key to their activity. TrxR and Trx are more sensitive than some other redox-sensitive proteins, and their prolonged inhibition could disrupt a number of redox-sensitive functions in cells. Among these effects are the oxidation of peroxiredoxins and the activation of apoptosis signal regulating kinase (ASK1). ASK1 promotes MAP kinase activation, and p38 activation contributes to apoptosis and a number of other acrolein-induced stress responses. Overall, the disruption of the TrxR/Trx system by acrolein could be significant early and prolonged events that affect many aspects of redox-sensitive signaling and oxidant stress.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
12
|
Doxycycline attenuates acrolein-induced mucin production, in part by inhibiting MMP-9. Eur J Pharmacol 2011; 650:418-23. [DOI: 10.1016/j.ejphar.2010.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 09/30/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022]
|