1
|
Qiu X, Huang MN, Ping S. Genetic susceptibility and causal pathway analysis of eye disorders coexisting in multiple sclerosis. Front Immunol 2024; 15:1337528. [PMID: 38375484 PMCID: PMC10875133 DOI: 10.3389/fimmu.2024.1337528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction The comorbidity of optic neuritis with multiple sclerosis has been well recognized. However, the causal association between multiple sclerosis and optic neuritis, as well as other eye disorders, remains incompletely understood. To address these gaps, we investigated the genetically relationship between multiple sclerosis and eye disorders, and explored potential drugs. Methods In order to elucidate the genetic susceptibility and causal links between multiple sclerosis and eye disorders, we performed two-sample Mendelian randomization analyses to examine the causality between multiple sclerosis and eye disorders. Additionally, causal single-nucleotide polymorphisms were annotated and searched for expression quantitative trait loci data. Pathway enrichment analysis was performed to identify the possible mechanisms responsible for the eye disorders coexisting with multiple sclerosis. Potential therapeutic chemicals were also explored using the Cytoscape. Results Mendelian randomization analysis revealed that multiple sclerosis increased the incidence of optic neuritis while reducing the likelihood of concurrent of cataract and macular degeneration. Gene Ontology enrichment analysis implicated that lymphocyte proliferation, activation and antigen processing as potential contributors to the pathogenesis of eye disorders coexisting with multiple sclerosis. Furthermore, pharmaceutical agents traditionally employed for allograft rejection exhibited promising therapeutic potential for the eye disorders coexisting with multiple sclerosis. Discussion Multiple sclerosis genetically contributes to the development of optic neuritis while mitigating the concurrent occurrence of cataract and macular degeneration. Further research is needed to validate these findings and explore additional mechanisms underlying the comorbidity of multiple sclerosis and eye disorders.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mi Ni Huang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Suning Ping
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Tailor NK, Grewal AS, Deswal G, Dhingra AK. Germacrone: A Multi-targeting Sesquiterpene with Promising Anti-cancer and Chronic Disease Applications. Anticancer Agents Med Chem 2024; 24:1396-1406. [PMID: 39113300 DOI: 10.2174/0118715206312324240805075050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Germacrone, a naturally occurring active compound found in essential oils extracted from medicinal plants within the Zingiberaceae family, has garnered attention for its potential therapeutic applications. Extensive research has highlighted its multi-targeting capabilities, positioning it as a promising treatment for various chronic diseases, including cancer, cardiovascular conditions, and neurodegenerative disorders like Alzheimer's disease. OBJECTIVE This review aims to provide a comprehensive overview of germacrone as a scaffold for developing multi-targeting drugs with therapeutic potential against a range of chronic disorders. The study delves into the molecular mechanisms that underlie the therapeutic effects of germacrone and explores its potential targets, including NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction. METHODS A systematic review of literature databases was conducted to gather relevant studies on germacrone and its therapeutic applications. The molecular mechanisms and potential targets of germacrone were examined to elucidate its multi-targeting capabilities. RESULTS Germacrone exhibits significant potential in the management of chronic diseases, with demonstrated effects on various cellular pathways. The review highlights its impact on NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction, showcasing its versatility in targeting multiple pathways associated with chronic conditions. Germacrone has emerged as a promising candidate for the treatment of diverse chronic diseases. The understanding of its multi-targeting capabilities, coupled with its natural origin, positions it as a valuable scaffold for developing therapeutics. CONCLUSION The exploration of germacrone as a structural framework for multi-targeting drugs offers a potential avenue to enhance efficacy while minimizing potential side effects. Further research and clinical trials are warranted to validate the therapeutic potential of germacrone in diverse medical contexts.
Collapse
Affiliation(s)
- Navin Kumar Tailor
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ajmer Singh Grewal
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Geeta Deswal
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Sciences, Global Research Institute of Pharmacy, Radaur, Yamuna Nagar, Haryana, India
| |
Collapse
|
3
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
4
|
Ma LT, Bai Y, Cao P, Ren KX, Chen J, Zhang T, Fan BY, Qiao Y, Yan HY, Wang JJ, Li YQ, Zheng J. The analgesic effects of β-elemene in rats with neuropathic pain by inhibition of spinal astrocytic ERK activation. Mol Pain 2022; 18:17448069221121562. [PMID: 35976914 PMCID: PMC9393702 DOI: 10.1177/17448069221121562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of β-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dorsal horn (SDH) under neuropathic pain. A spared nerve injury (SNI)-induced neuropathic pain model was established in rats. Intraperitoneal injection (i.p.) of β-elemene was administered for 21 consecutive days. Mechanical allodynia was explored by von Frey filaments. The activation of the mitogen-activated protein kinase (MAPK) family (including ERK, p38, and JNK) in spinal neurons, astrocytes, and microglia was evaluated using immunostaining 29 days after SNI surgery. The expression of GFAP, Iba-1, p-ERK, p-JNK, and p-p38 within the SDH was measured using immunoblotting. The levels of proinflammatory cytokines (including TNF-α, IL-1β, and IL-6) were measured with ELISA. The levels of oxidative stress indicators (including MDA, SOD, and GSH-PX) were detected using biochemical tests. Consecutive i.p. administration of β-elemene relieved SNI-induced mechanical allodynia (with an EC50 of 16.40 mg/kg). SNI significantly increased the expression of p-ERK in spinal astrocytes but not microglia on day 29. β-elemene reversed spinal astrocytic ERK activation and subsequent upregulation of proinflammatory cytokines in SNI rats, with no effect on the expression of p38 and JNK in spinal glia. β-elemene also exerted antioxidative effects by increasing the levels of SOD and GSH-PX and decreasing the level of MDA. Our results suggest that SNI induces robust astrocytic ERK activation within the SDH in the late phase of neuropathic pain. β-elemene exerts remarkable analgesic effects on neuropathic pain, possibly by inhibiting spinal astrocytic ERK activation and subsequent neuroinflammatory processes. Our findings suggest that β-elemene might be a promising analgesic for the treatment of chronic pain.
Collapse
Affiliation(s)
- Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China.,Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Peng Cao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Kai-Xi Ren
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi'an, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yu Qiao
- Laser Medical Center, Hainan Hospital, PLA General Hospital, Sanya, China
| | - Hong-Yu Yan
- 36674The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing-Jie Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi'an, China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Dali University, Dali, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
5
|
Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokinetics review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Zhou Y, Takano T, Wang Y, Li X, Wang R, Wakatsuki Y, Nakajima-Adachi H, Tanokura M, Miyakawa T, Hachimura S. Intestinal regulatory T cell induction by β-elemene alleviates the formation of fat tissue-related inflammation. iScience 2021; 24:101883. [PMID: 33364577 PMCID: PMC7750371 DOI: 10.1016/j.isci.2020.101883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/20/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The role of the intestinal immune system in the inhibition of fat tissue-related inflammation by dietary material is yet to be elucidated. Oral administration of β-elemene, contained in various foodstuffs, downregulated expressions of inflammatory cytokines and increased Foxp3+CD4+ T cells in adipose tissue of obese mice. However, β-elemene did not affect the inflammatory response of adipose tissue in vitro, suggesting that the inhibition observed in vivo was not due to direct interactions of adipose tissue with β-elemene. Instead, β-elemene increased Foxp3+CD4+ T cell population enhancing gene expressions of transforming growth factor β 1, retinaldehyde dehydrogenase 2, integrin αvβ8, and interleukin-10 in intestinal dendritic cells (DCs) in vivo and in vitro. Taken together, this study suggested the therapeutic effects of β-elemene on treating experimental obesity-induced chronic inflammation by adjusting the balance of immune cell populations in fat tissue through the generation of regulatory T cells in the intestinal immune system by modulating DC function.
Collapse
Affiliation(s)
- Yingyu Zhou
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohiro Takano
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yimei Wang
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Xuyang Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Rong Wang
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshio Wakatsuki
- Department of Clinical Bio-regulatory Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Haruyo Nakajima-Adachi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Shariare MH, Rahman M, Lubna SR, Roy RS, Abedin J, Marzan AL, Altamimi MA, Ahamad SR, Ahmad A, Alanazi FK, Kazi M. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model. Sci Rep 2020; 10:6938. [PMID: 32332809 PMCID: PMC7181877 DOI: 10.1038/s41598-020-63894-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (Alzheimer’s, Parkinson’s etc.) causes brain cell damage leading to dementia. The major restriction remains in delivering drug to the central nervous system is blood brain barrier (BBB). The aim of this study was to develop a liposomal drug delivery system of Aphanamixis polystachya leaf extract for the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. In this study GC-MS analysis is used to determine major constituents of Aphanamixis polystachya leaf extract. Liposomal batches of Aphanamixis polystachya leaf extract was prepared using design of experiment (DoE) and characterized using Malvern zetasizer, transmission electron microscopy (TEM), and FT-IR. Stability study of blank and leaf extract loaded liposome were performed in gastric media. In-vivo neurobehavioral and anti-inflammatory studies were performed on mice and rat model respectively. GC-MS data showed that major constituents of Aphanamixis polystachya leaf extract are 2-Pentanone, different acids (Octadec-9-enoic acid, 5-Hydroxypipeloic acid etc.), and Beta-Elemene etc. Malvern Zetasizer and TEM data showed that liposome batches of Aphanamixis polystachya leaf extract were in the range of 120 - 180 nm. Interactions between process parameters and material attributes found to have more impact on the average particle size and polydispersity of liposome batches compared to the impact of each parameter in isolation. Stability studies data suggest that blank and leaf extract loaded liposomes were stable at gastric conditions after 4 hours. In-vivo neurobehavioural study data indicated that significant improvement in the memory function, locomotor activity and ambulatory performance of dementia induced mice was observed for the liposomal batches compared to merely A. polystachya leaf extract.
Collapse
Affiliation(s)
- Mohammad H Shariare
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
| | - Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Shamshad R Lubna
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Reeti S Roy
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Joynal Abedin
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Akbar L Marzan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Syed Rizwan Ahamad
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Fars K Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
9
|
The Antitumor Efficacy of β-Elemene by Changing Tumor Inflammatory Environment and Tumor Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6892961. [PMID: 32149121 PMCID: PMC7054771 DOI: 10.1155/2020/6892961] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory mediators and inflammatory cells in the inflammatory microenvironment promote the transformation of normal cells to cancer cells in the early stage of cancer, promote the growth and development of cancer cells, and induce tumor immune escape. The monomeric active ingredient β-elemene is extracted from the traditional Chinese medicine Curcuma wenyujin and has been proven to have good anti-inflammatory and antitumor activities in clinical applications for more than 20 years in China. Recent studies have found that this traditional Chinese medicine plays a vital role in macrophage infiltration and M2 polarization, as well as in regulating immune disorders, and it even regulates the transcription factors NF-κB and STAT3 to alter inflammation, tumorigenesis, and development. In addition, β-elemene regulates not only different inflammatory factors (such as TNF-α, IFN, TGF-β, and IL-6/10) but also oxidative stress in vivo and in vitro. The excellent anti-inflammatory and antitumor effects of β-elemene and its ability to alter the inflammatory microenvironment of tumors have been gradually elaborated. Although the study of monomeric active ingredients in traditional Chinese medicines is insufficient in terms of quality and quantity, the pharmacological effects of more active ingredients of traditional Chinese medicines will be revealed after β-elemene.
Collapse
|
10
|
Zhou Y, Liu Y, Chen J, Sun YZ, Li LH, Chen L. Inhibition of β-elemene on the expressions of HIF-lα, VEGF and iNOS in diabetic rats model. Int J Ophthalmol 2019; 12:1693-1698. [PMID: 31741856 DOI: 10.18240/ijo.2019.11.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 02/02/2023] Open
Abstract
AIM To evaluate the effect of β-elemene on the expressions of hypoxia-inducible factor (HIF)-lα, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) in a streptozotocin (STZ) induced diabetic Sprague-Dawley (SD) rat model. METHODS SD rats were administered an abdominal injection of STZ and induced to a diabetic model. After 6wk course of diabetes, the treatment groups were given β-elemene through periocular and intravitreous injection separately and the control groups were given blank emulsion injection. HE staining was used to observe the morphology of retina. The mRNA expressions of HIF-1α, VEGF and iNOS was assayed by real-time polymerase chain reaction (PCR) and the protein expression was measured by Western blot and immunocytochemistry methods. RESULTS The results indicated that the protein and mRNA expressions of HIF-1α, VEGF and iNOS after treated by β-elemene periocularly and intravitreally injections were all found to be reduced compared with the levels in the diabetic rats group (P<0.05). The inhibitory effect of intravitreal injection was more remarkable. CONCLUSION The results show β-elemene protect the retina of diabetic rats from high glucose damage by downregulating the expression of HIF-1α, VEGF and iNOS.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yan Liu
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jun Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi-Zhou Sun
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Hua Li
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Lei Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
11
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
12
|
Pan C, Si Y, Meng Q, Jing L, Chen L, Zhang Y, Bao H. Suppression of the RAC1/MLK3/p38 Signaling Pathway by β-Elemene Alleviates Sepsis-Associated Encephalopathy in Mice. Front Neurosci 2019; 13:358. [PMID: 31068775 PMCID: PMC6491839 DOI: 10.3389/fnins.2019.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/28/2019] [Indexed: 01/22/2023] Open
Abstract
It is still difficult to treat sepsis-associated encephalopathy (SAE) which is a diffuse brain dysfunction caused by sepsis, with excessive activation of microglia as one of the main mechanisms. Ras-related C3 botulinum toxin substrate 1 (RAC1) is proven to be a key molecule in the inflammatory signaling network. By using microglial cell line BV-2 and a mouse model of cecal ligation puncture (CLP), we herein evaluated the effects of β-elemene, an extract of Curcuma zedoaria Rosc., on RAC1 signaling in microglia. β-Elemene decreased the expressions of pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6] and attenuated translocation of nuclear factor-κB (NF-κB) p65 from the cytosol to the nucleus in BV-2 cells after lipopolysaccharide (LPS) treatment. It also inhibited the activation of RAC1, mixed-lineage protein kinase 3 (MLK3) and p38 mitogen-activated protein kinase (MAPK). The phosphorylation of the RAC1 Ser71 site was increased by β-elemene. Moreover, the learning and memory abilities of CLP mice in the water maze test and fear conditioning test were improved after β-elemene treatment. It reduced the expression of the microglial marker IBA1, significantly increased RAC1 Ser71 phosphorylation, and suppressed the RAC1/MLK3/p38 signaling activation and inflammatory response in the hippocampus. In conclusion, β-elemene effectively alleviated SAE in mice and inhibited the RAC1/MLK3/p38 signaling pathway in microglia, and might be an eligible potential candidate for SAE treatment.
Collapse
Affiliation(s)
- Cailong Pan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Jing
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Sieniawska E, Michel P, Mroczek T, Granica S, Skalicka-Woźniak K. Nigella damascena L. essential oil and its main constituents, damascenine and β-elemene modulate inflammatory response of human neutrophils ex vivo. Food Chem Toxicol 2019; 125:161-169. [PMID: 30610933 DOI: 10.1016/j.fct.2018.12.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 01/20/2023]
Abstract
Nigella damascena L belongs to Ranunculaceae family and is mentioned in Eastern traditional medicine for the treatment of high temperatures, regulation of menstruation or catarrhal affections. The anti-inflammatory activity of compounds present in the essential oil obtained from seeds of this plant can be found in literature, however no studies on immunomodulatory activity are provided. Hence, in this work anti-inflammatory activity of N. damascena seed essential oil as well as damascenine and main compound β-elemene was evaluated on ex-vivo lipopolysaccharide (LPS)-stimulated human neutrophils. For isolation of damascenine fast and efficient protocol was elaborated using high performance countercurrent chromatography technique for the first time. Also detailed spectroscopic characteristic of damascenine was provided for the first time. Damascenine was separated from the essential oil in a mixture of petroleum ether/acetonitrile/acetone (2:1.5:0.5 v/v/v) in reversed phase mode in 12 min with 99.47% purity. Essential oil, damascenine and β-elemene presented immunomodulatory activity evaluated in LPS-stimulated neutrophils ex vivo. All studied samples significantly inhibited release of interleukin 1 beta (IL-1β) and interleukin 8 (IL-8). What is more, damascenine and β-elemene decreased matrix metallopeptidase 9 (MMP-9) production similar to dexamethasone. The release of tumor necrosis factor (TNF-α) was also inhibited in all range of concentrations, however the activity was weaker then activity of dexametasone. The previously reported anti-inflammatory activity of damascenine and β-elemene investigated in murine models was confirmed in our study on human neuthrophils suggesting their possible strong inhibitory effect on inflammatory response progression.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland.
| | - Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., Lodz, 90-151, Poland
| | - Tomasz Mroczek
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, Warsaw, 02-097, Poland
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland
| |
Collapse
|
14
|
Meng X, Li N, Zhang Y, Fan D, Yang C, Li H, Guo D, Pan S. Beneficial Effect of β-Elemene Alone and in Combination with Hyperbaric Oxygen in Traumatic Brain Injury by Inflammatory Pathway. Transl Neurosci 2018; 9:33-37. [PMID: 29992051 PMCID: PMC6034101 DOI: 10.1515/tnsci-2018-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/09/2018] [Indexed: 11/25/2022] Open
Abstract
Background Present study evaluates the neuroprotective effect of β-elemene alone and in combination with hyperbaric oxygen (HO) in traumatic brain injury (TBI). Methodology TBI was induced by dropping a weight from a specific height. All the animals were separated in to five groups (n=20) like control group; TBI group; β-elemene treated group which receives β-elemene (100 mg/kg, i.p.) half an hour after the injury; HO group which receives hyperbaric oxygen therapy and β-elemene + HO group which receives β-elemene (100 mg/kg, i.p.) half an hour after the injury and hyperbaric oxygen therapy. Neurological function was assessed to evaluate the effect of β-elemene in TBI rats. Thereafter level of inflammatory cytokines and expression of protein of inflammatory pathway was assessed in the brain tissues of TBI rats. In addition TUNEL assay was also done for the determination apoptosis in neuronal cells. Result Data of the report reveals that β-elemene alone and in combination with hyperbaric oxygen (HO) significantly decreases the neurological score Compared to TBI group. Moreover level of inflammatory cytokines and expression of LTR4 and casepase 3 significantly decrease and increase in the expression of IkB in β-elemene alone and in combination with hyperbaric oxygen (HO) treated group compared to TBI group. Data of TUNEL assay also reveals that β-elemene treated group shows significant decrease in the TUNEL positive cells and apoptosis index compared to TBI group. Conclusion Thus present study concludes the neuroprotective effect of β-elemene against TBI and it shows synergistic effect on TBI when treated with HO.
Collapse
Affiliation(s)
- Xiangen Meng
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Na Li
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Yu Zhang
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Danfeng Fan
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Chen Yang
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Hang Li
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Dazhi Guo
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Shuyi Pan
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| |
Collapse
|
15
|
Fang Y, Kang Y, Zou H, Cheng X, Xie T, Shi L, Zhang H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia 2017; 124:92-102. [PMID: 29066299 DOI: 10.1016/j.fitote.2017.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022]
Abstract
β-elemene, extracted from Rhizoma zedoariae, has been widely used as a traditional medicine for its antitumor activity against a broad range of cancers. However, the effect of β-elemene in inflammation disorders has yet to be determined. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of β-elemene in lipopolysaccharide (LPS)-induced murine macrophage cells RAW264.7. We found that the production of pro-inflammatory mediators, including interleukin-6(IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), induced by LPS was significantly suppressed by β-elemene in a dose-dependent manner in RAW264.7 macrophage cell line. Also, β-elemene inhibited LPS-induced nitric oxide synthase (iNOS) and interleukin-10 (IL-10) expression by RAW264.7, which was related to the down-regulation of Wnt/β-catenin signaling pathway. Importantly, this study demonstrates that β-catenin was significantly inhibited by β-elemene, which appeared to be largely responsible for the down-regulation of Wnt/β-catenin signaling pathway. Accordingly, the deletion of β-catenin in primary macrophages reversed β-catenin-elicited inhibition of immune response. Furthermore, β-catenin expression and Wnt/β-catenin signaling pathway induced by LPS in RAW264.7 was also significantly inhibited by α-humulene, one isomeric sesquiterpene of β-elemene. α-humulene was also found to significantly inhibit LPS-induced production of proinflammatory cytokines. However, α-humulene showed more cytotoxic ability than β-elemene. Collectively, our data illustrated that β-elemene exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of β-catenin, and also demonstrated the protective functions of β-elemene in endotoxin-induced inflammation. β-elemene may serve as potential nontoxic modulatory agents for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yangyi Fang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhua Kang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zou
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaxuan Cheng
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- Institute of Holistic Integrative Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liyun Shi
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hang Zhang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Sun W, Huang Y, Yin T, Wang J, Du R, Qiu J, Zhang Y, Wang Y, Chen J, Wang G. Effects of elemene on inhibiting proliferation of vascular smooth muscle cells and promoting reendothelialization at the stent implantation site. Biomater Sci 2017; 5:1144-1155. [DOI: 10.1039/c7bm00190h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elemene coated stents prepared by electrospray could inhibit proliferation of VSMCs and promote endothelialization after implantation into rabbit iliac arteries.
Collapse
|
17
|
Shi H, Liu L, Liu LM, Geng J, Chen L. Inhibition of tumor growth by β-elemene through downregulation of the expression of uPA, uPAR, MMP-2, and MMP-9 in a murine intraocular melanoma model. Melanoma Res 2015; 25:15-21. [PMID: 25405459 DOI: 10.1097/cmr.0000000000000124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper explores the underlying mechanism through which β-elemene inhibits the growth of intraocular melanoma in a mouse model. C57BL/6J mice were administered a subretinal injection of B16F10 melanoma cells and divided into two groups: treatment and control. The treatment group was administered β-elemene through an intravitreal injection and the control group was injected with a blank emulsion. After 21 days of continuous treatment, tumor masses were removed and weighed. The mRNA expression levels of the urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), matrix metalloproteinase (MMP)-2, and MMP-9 were assayed by real-time PCR, and the protein expression levels of uPA, uPAR, MMP-2, and MMP-9 were assayed by immunocytochemistry and western blotting. Tumor size was inhibited by β-elemene in the treatment group, and the expressions of uPA, uPAR, MMP-2, and MMP-9 were all downregulated at both the mRNA and the protein level compared with the control group. In a mouse model of intraocular melanoma, β-elemene inhibits tumor growth by downregulating the expression of uPA, uPAR, MMP-2, and MMP-9.
Collapse
Affiliation(s)
- Hong Shi
- aDepartment of Ophthalmology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Shushan, Hefei bDepartment of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Dynamics of supercritical extraction of biological active substances from the Juniperus communis var. saxatillis. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Xu WJ, Wang JS. Immunosuppressive effect of Chinese medicine on T helper 17 cells. Chin J Integr Med 2015. [PMID: 25555595 DOI: 10.1007/s11655-014-1959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 01/30/2023]
Abstract
T helper (Th)17 cells have been proposed to play important roles in several human diseases. The literatures about Chinese medicine studies, which related to inhibiting Th17, were reviewed, and the Chinese medicine which could inhibit Th17 cells was summarized in this paper.
Collapse
Affiliation(s)
- Wen-Jun Xu
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | | |
Collapse
|
20
|
β-Elemene inhibits the metastasis of B16F10 melanoma cells by downregulation of the expression of uPA, uPAR, MMP-2, and MMP-9. Melanoma Res 2014; 24:99-107. [PMID: 24535052 DOI: 10.1097/cmr.0000000000000043] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
β-Elemene has been reported to be effective for the treatment of leukemia and certain solid tumors in basic and clinical studies. However, the mechanism of action of this phytochemical remains unknown. This study aimed to investigate the effect and mechanism of β-elemene in the mouse melanoma cell line B16F10. Cell viability was measured using the MTT assay. β-Elemene inhibited B16F10 melanoma cell metastasis, examined using scratch and Transwell migration/invasion assays. The mRNA and protein expression of urokinase-type plasminogen activator (uPA), the uPA receptor (uPAR), matrix metalloproteinase (MMP)-2, and MMP-9 were assayed using real-time PCR, immunocytochemistry, and western blotting methods. The results indicated that β-elemene inhibited the viability of B16F10 melanoma cells in a dose-dependent and time-dependent manner. The migratory and invasive capacities of B16F10 cells were also inhibited by β-elemene. The expression of uPA, uPAR, MMP-2, and MMP-9 was reduced by β-elemene at both the mRNA and protein level. β-Elemene inhibits the metastasis of B16F10 melanoma cells through downregulation of the expression of uPA, uPAR, MMP-2, and MMP-9. Thus, β-elemene is a natural potential anticancer drug.
Collapse
|
21
|
Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC. Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflammation 2013; 10:120. [PMID: 24090415 PMCID: PMC3851328 DOI: 10.1186/1742-2094-10-120] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is often accompanied by optic nerve inflammation. And some patients experience permanent vision loss. We examined if the grade of optic nerve infiltration and demyelination affects the severity of clinical signs in an experimental autoimmune encephalomyelitis (EAE) model. The loss of retinal ganglion cells (RGC) and alterations in glia activity were also investigated. Methods C57BL/6 mice were immunized with peptide MOG35-55 in complete Freund’s adjuvant (CFA) and controls received PBS in CFA. Then 23 days post immunization eyes were prepared for flatmounts and stained with Nissl to evaluated neuronal density. Clinical EAE symptoms as well as cell infiltration and demyelination in the optic nerve were examined. Retinal sections were stained with hematoxylin and eosin and silver stain. Immunohistochemistry was used to label RGCs (Brn-3a), apoptotic cells (caspase 3), macroglia (glial fibrillary acidic protein (GFAP)), microglia (Iba1), macrophages (F 4/80) and interleukin-6 (IL-6) secretion. Results EAE symptoms started at day 8 and peaked at day 15. Cell infiltrations (P = 0.0047) and demyelination (P = 0.0018) of EAE nerves correlated with the clinical score (r > 0.8). EAE led to a significant loss of RGCs (P< 0.0001). Significantly more caspase 3+ cells were noted in these animals (P = 0.0222). They showed an increased expression of GFAP (P< 0.0002) and a higher number of microglial cells (P< 0.0001). Also more macrophages and IL-6 secretion were observed in EAE mice. Conclusions MOG immunization leads to optic neuritis and RGC loss. EAE severity is related to the severity of optic nerve inflammation and demyelination. EAE not only affects activation of apoptotic signals, but also causes a glial response in the retina.
Collapse
Affiliation(s)
- Lioba Horstmann
- Experimental Eye Research Institute, Ruhr University Eye Hospital, In der Schornau 23-25, 44892 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Aggarwal BB, Yuan W, Li S, Gupta SC. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol Nutr Food Res 2013; 57:1529-42. [PMID: 23847105 DOI: 10.1002/mnfr.201200838] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 02/02/2023]
Abstract
Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | | | | | | |
Collapse
|
23
|
Chen M, Wang S, Tan M, Wang Y. Applications of Nanoparticles in Herbal Medicine: Zedoary Turmeric Oil and Its Active Compound β-Elemene. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:1093-102. [DOI: 10.1142/s0192415x11009421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Zedoary turmeric oil and its main active ingredient β-elemene are novel plant-derived anticancer agents with long-term clinical application history and low toxicity, which have been approved by the Chinese SFDA to treat different tumors including cancers of the brain, ovary, prostate, breast, lungs, liver, colon, and other tissues. Unfortunately, their hydrophobic properties, poor stabilities and low bioavailabilities seriously hamper their applications in clinic. Therefore, more attention should be paid to develop novel drug delivery systems for zedoary turmeric oil and β-elemene to enhance their overall quality. Recently, increased research has been carried out on a nanoparticle drug delivery system of zedoary turmeric oil and β-elemene to solve their poor aqueous solubilities and low bioavailabilities in vivo with much remarkable achievements springing up in the last decade. This review presents the novel nanoparticle formulations of zedoary turmeric oil and β-elemene and introduces the possible future prospects of their further study.
Collapse
Affiliation(s)
- Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Miao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
24
|
Euphol prevents experimental autoimmune encephalomyelitis in mice: Evidence for the underlying mechanisms. Biochem Pharmacol 2012; 83:531-42. [DOI: 10.1016/j.bcp.2011.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023]
|
25
|
Barrero AF, Herrador MM, Quílez del Moral JF, Arteaga P, Meine N, Pérez-Morales MC, Catalán JV. Efficient synthesis of the anticancer β-elemene and other bioactive elemanes from sustainable germacrone. Org Biomol Chem 2011; 9:1118-25. [DOI: 10.1039/c0ob00467g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|