1
|
Zhang J, Sun Y, Sun C, Shang D. The antimicrobial peptide LK2(6)A(L) exhibits anti-inflammatory activity by binding to the myeloid differentiation 2 domain and protects against LPS-induced acute lung injury in mice. Bioorg Chem 2023; 132:106376. [PMID: 36706531 DOI: 10.1016/j.bioorg.2023.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease that is generally attributable to an uncontrolled inflammatory response in the lung, but there is a lack of effective treatments. At present, regulating the inflammatory response has become an important strategy for treating ALI. In the present study, LK2(6)A(L), a peptide derived from the natural antimicrobial peptide temporin-1CEa, inhibited lipopolysaccharide (LPS)-induced expression of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and NO in RAW264.7 cells. Herein, the anti-inflammatory mechanism of LK2(6)A(L) was investigated. The RNA-sequencing (RNA-seq) results showed that LK2(6)A(L) significantly inhibited the TLR4-mediated NF-κB and MAPK signaling pathways in LPS-induced RAW264.7 cells. The results of co-immunoprecipitation (Co-IP), pull-down experiment, confocal laser scanning microscopy, and surface plasmon resonance (SPR) suggested that MD2 was the direct target of LK2(6)A(L). Chemical inhibition of MD2 and its knockdown abolished the anti-inflammatory effect of LK2(6)A(L). Molecular dynamic simulation indicated that LK2(6)A(L) could bind to the active domain of the MD2 hydrophobic pocket via six hydrogen bonds. The truncated peptides were designed based on analysis of the molecular docking of LK2(6)A(L) to MD2. The truncated peptide IS-7 showed strong affinity to MD2 and a remarkable inhibitory effect on pro-inflammatory factors that was comparable to the effect of LK2(6)A(L). Finally, LK2(6)A(L) and IS-7 relieved inflammatory symptoms and lung tissue destruction in the ALI mouse model. Overall, our study suggested that LK2(6)A(L) showed promising anti-inflammatory activity by targeting MD2, and the amino acid domain 7-13 was an important area that binds with MD2 and also an anti-inflammatory active region. LK2(6)A(L) and IS-7 may be potential new treatments for ALI and other acute inflammatory diseases.
Collapse
Affiliation(s)
- Juan Zhang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Chengpeng Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
2
|
Chen G, Liu C, Zhang M, Wang X, Xu Y. Niloticin binds to MD-2 to promote anti-inflammatory pathway activation in macrophage cells. Int J Immunopathol Pharmacol 2022; 36:3946320221133017. [PMID: 36314579 PMCID: PMC9629566 DOI: 10.1177/03946320221133017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Niloticin is an active compound isolated from Cortex phellodendri with uncharacterized anti-inflammatory activity. We assessed the drug potential of niloticin and examined its ability to target myeloid differentiation protein 2 (MD-2) to ascertain the mechanism for its anti-inflammatory activity. METHODS The Traditional Chinese Medicine Systems Pharmacology Database was used to evaluate niloticin. Bio-layer interferometry and molecular docking technologies were used to explore how niloticin targets MD-2, which mediates a series of toll-like receptor 4 (TLR4)-dependent inflammatory responses. The cytokines involved in the lipopolysaccharide (LPS)-TLR4/MD-2-NF-κB pathway were evaluated using ELISA, RT-qPCR, and western blotting. RESULTS Niloticin could bind to MD-2 and had no evident effects on cell viability. Niloticin treatment significantly decreased the levels of NO, IL-6, TNF-α, and IL-1β induced by LPS (p < 0.01). IL-1β, IL-6, iNOS, TNF-α, and COX-2 mRNA expression levels were decreased by niloticin (all p < 0.01). Compared with that in the control group, the increase in TLR4, p65, MyD88, p-p65, and iNOS expression levels induced by LPS were suppressed by niloticin (all p < 0.01). CONCLUSION Our results suggest that niloticin has therapeutic potential and binds to MD-2. Niloticin binding to MD-2 antagonized the effects of LPS binding to the TLR4/MD-2 complex, resulting in the inhibition of the LPS-TLR4/MD-2-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Guirong Chen
- Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China,Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chang Liu
- Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mingbo Zhang
- Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiaobo Wang
- Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China,Xiaobo Wang, Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China.
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China,Yubin Xu, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| |
Collapse
|
3
|
Rahman MM, Rahaman MS, Islam MR, Hossain ME, Mannan Mithi F, Ahmed M, Saldías M, Akkol EK, Sobarzo-Sánchez E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1076. [PMID: 34572660 PMCID: PMC8468069 DOI: 10.3390/antibiotics10091076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Chen L, Fu W, Zheng L, Wang Y, Liang G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov Today 2018; 23:1187-1202. [PMID: 29330126 DOI: 10.1016/j.drudis.2018.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/09/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Myeloid differentiation protein 2 (MD2), together with Toll-like receptor 4 (TLR4), binds lipopolysaccharide (LPS) with high affinity, inducing the formation of the activated homodimer LPS-MD2-TLR4. MD2 directly recognizes the Lipid A domain of LPS, leading to the activation of downstream signaling of cytokine and chemokine production, and initiation of inflammatory and immune responses. However, excessive activation and potent host responses generate severe inflammatory syndromes such as acute sepsis and septic shock. MD2 is increasingly being considered as an attractive pharmacological target for the development of potent anti-inflammatory agents. In this Keynote review, we provide a comprehensive overview of the recent advances in the structure and biology of MD2, and present MD2 modulators as promising agents for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Weitao Fu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lulu Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
5
|
Wu H, Yang Y, Guo S, Yang J, Jiang K, Zhao G, Qiu C, Deng G. Nuciferine Ameliorates Inflammatory Responses by Inhibiting the TLR4-Mediated Pathway in Lipopolysaccharide-Induced Acute Lung Injury. Front Pharmacol 2017; 8:939. [PMID: 29311940 PMCID: PMC5742629 DOI: 10.3389/fphar.2017.00939] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is a complex syndrome with sepsis occurring in critical patients, who usually lack effective therapy. Nuciferine is a primary bioactive component extracted from the lotus leaf, and it displays extensive pharmacological functions, including anti-cancer, anti-inflammatory, and antioxidant properties. Nevertheless, the effects of nuciferine on lipopolysaccharide (LPS)-stimulated ALI in mice has not been investigated. ALI of mice stimulated by LPS was used to determine the anti-inflammatory function of nuciferine. The molecular mechanism of nuciferine was performed on RAW264.7 macrophage cells. The results of pathological section, myeloperoxidase activity and lung wet/dry ratio showed that nuciferine alleviated LPS-induced lung injury (p < 0.05). qRT-PCR and ELISA experiments suggested that nuciferine inhibited TNF-α, IL-6, and IL-1β secretion in tissues and RAW264.7 cells but increased IL-10 secretion (p < 0.05). Molecular studies showed that TLR4 expression and nuclear factor (NF)-κB activation were both inhibited by nuciferine treatment (p < 0.05). To further investigate the anti-inflammatory mechanism of nuciferine, TLR4 was knocked down. When TLR4 was silenced, LPS induced the production of IL-1β, and TNF-α was markedly decreased by TLR4-siRNA and nuciferine treatment in LPS-induced RAW264.7 cells (p < 0.05). These results suggested that nuciferine had the ability to protect against LPS-stimulated ALI. Thus, nuciferine may be a potential drug for treating LPS-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Tumurkhuu G, Dagvadorj J, Jones HD, Chen S, Shimada K, Crother TR, Arditi M. Alternatively spliced myeloid differentiation protein-2 inhibits TLR4-mediated lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1686-94. [PMID: 25576596 PMCID: PMC4323992 DOI: 10.4049/jimmunol.1402123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We previously identified a novel alternatively spliced isoform of human myeloid differentiation protein-2 (MD-2s) that competitively inhibits binding of MD-2 to TLR4 in vitro. In this study, we investigated the protective role of MD-2s in LPS-induced acute lung injury by delivering intratracheally an adenovirus construct that expressed MD-2s (Ad-MD-2s). After adenovirus-mediated gene transfer, MD-2s was strongly expressed in lung epithelial cells and readily detected in bronchoalveolar lavage fluid. Compared to adenovirus serotype 5 containing an empty vector lacking a transgene control mice, Ad-MD-2s delivery resulted in significantly less LPS-induced inflammation in the lungs, including less protein leakage, cell recruitment, and expression of proinflammatory cytokines and chemokines, such as IL-6, keratinocyte chemoattractant, and MIP-2. Bronchoalveolar lavage fluid from Ad-MD-2s mice transferred into lungs of naive mice before intratracheal LPS challenge diminished proinflammatory cytokine levels. As house dust mite (HDM) sensitization is dependent on TLR4 and HDM Der p 2, a structural homolog of MD-2, we also investigated the effect of MD-2s on HDM-induced allergic airway inflammation. Ad-MD-2s given before HDM sensitization significantly inhibited subsequent allergic airway inflammation after HDM challenge, including reductions in eosinophils, goblet cell hyperplasia, and IL-5 levels. Our study indicates that the alternatively spliced short isoform of human MD-2 could be a potential therapeutic candidate to treat human diseases induced or exacerbated by TLR4 signaling, such as Gram-negative bacterial endotoxin-induced lung injury and HDM-triggered allergic lung inflammation.
Collapse
Affiliation(s)
- Gantsetseg Tumurkhuu
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Jargalsaikhan Dagvadorj
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Heather D Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shuang Chen
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Timothy R Crother
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| |
Collapse
|
7
|
Chi X, Zhang A, Luo G, Xia H, Zhu G, Hei Z, Liu X, Wei J, Xia Z. Knockdown of myeloid differentiation protein-2 reduces acute lung injury following orthotopic autologous liver transplantation in a rat model. Pulm Pharmacol Ther 2013; 26:380-7. [PMID: 23428646 DOI: 10.1016/j.pupt.2013.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/22/2013] [Accepted: 02/08/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious complication that commonly occurs during orthotopic liver transplantation (OLT). Toll-like receptor 2/4 (TLR2/4) are the main membrane receptors that respond to inflammatory stimuli and mediate NF-kappa B (NF-κB) signal pathway. We previously showed that TLR2/4 expression on monocytes and serum cytokine levels were increased in patients with ALI induced by OLT. Myeloid differentiation protein-2 (MD-2) expresses the functional domains that combines TLRs and play a key regulatory role in TLRs activation. Therefore, we hypothesized that blocking MD-2 would inhibit the TLR2/4-mediated inflammatory response and lessen ALI induced by liver transplantation. METHOD Thirty-two Sprague Dawley (SD) rats were randomly divided into four groups. One group received a sham operation (Group S), and the other three groups underwent orthotopic autologous liver transplantation (OALT) 48 h after intratracheal administration of saline (Model group; Group M), non-targeting siRNA (negative siRNA control group; Group NC) or siRNA against MD-2 (intervention group; Group RNAi). Lung pathology, lung water content, PaO2, and expression levels of MD-2, TLR2/4, NF-κB, TNF-α, IL-1β and IL-6 were assessed 8 h after OALT. RESULTS In Groups M and NC, OALT produced marked lung pathology with decreased PaO2 levels and increased MD-2, TLR2/4 gene and protein expression levels. Furthermore, the nuclear translocation of the NF-κB P65 subunit, was increased, as were lung concentrations of TNF-α, IL-1β and IL-6. The pathology of ALI and the severity of the above biochemical changes induced by OALT were significantly reduced in the group treated with MD-2 siRNA. CONCLUSION MD-2 gene knock-down attenuated the increase in TLR2/4 activation and reduced ALI after OALT.
Collapse
Affiliation(s)
- Xinjin Chi
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Goh FG, Midwood KS. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 2011; 51:7-23. [PMID: 21984766 DOI: 10.1093/rheumatology/ker257] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RA is a debilitating disorder that manifests as chronic localized synovial and systemic inflammation leading to progressive joint destruction. Recent advances in the molecular basis of RA highlight the role of both the innate and adaptive immune system in disease pathogenesis. Specifically, data obtained from in vivo animal models and ex vivo human tissue explants models has confirmed the central role of Toll-like receptors (TLRs) in RA. TLRs are pattern recognition receptors (PRRs) that constitute one of the primary host defence mechanisms against infectious and non-infectious insult. This receptor family is activated by pathogen-associated molecular patterns (PAMPs) and by damage-associated molecular patterns (DAMPs). DAMPs are host-encoded proteins released during tissue injury and cell death that activate TLRs during sterile inflammation. DAMPs are also proposed to drive aberrant stimulation of TLRs in the RA joint resulting in increased expression of cytokines, chemokines and proteases, perpetuating a vicious inflammatory cycle that constitutes the hallmark chronic inflammation of RA. In this review, we discuss the signalling mechanisms of TLRs, the central function of TLRs in the pathogenesis of RA, the role of endogenous danger signals in driving TLR activation within the context of RA and the current preclinical and clinical strategies available to date in therapeutic targeting of TLRs in RA.
Collapse
Affiliation(s)
- Fui G Goh
- Kennedy Institute of Rheumatology Division, Matrix Biology Department, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
9
|
Wang B, Gong X, Wan JY, Zhang L, Zhang Z, Li HZ, Min S. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol Ther 2011; 24:434-41. [DOI: 10.1016/j.pupt.2011.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/27/2011] [Accepted: 04/03/2011] [Indexed: 11/30/2022]
|