1
|
Davis RW, Papasavvas E, Klampatsa A, Putt M, Montaner LJ, Culligan MJ, McNulty S, Friedberg JS, Simone CB, Singhal S, Albelda SM, Cengel KA, Busch TM. A preclinical model to investigate the role of surgically-induced inflammation in tumor responses to intraoperative photodynamic therapy. Lasers Surg Med 2018; 50:440-450. [PMID: 29799130 DOI: 10.1002/lsm.22934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Inflammation is a well-known consequence of surgery. Although surgical debulking of tumor is beneficial to patients, the onset of inflammation in injured tissue may impede the success of adjuvant therapies. One marker for postoperative inflammation is IL-6, which is released as a consequence of surgical injuries. IL-6 is predictive of response to many cancer therapies, and it is linked to various molecular and cellular resistance mechanisms. The purpose of this study was to establish a murine model by which therapeutic responses to photodynamic therapy (PDT) can be studied in the context of surgical inflammation. MATERIALS AND METHODS Murine models with AB12 mesothelioma tumors were treated with either surgical resection or sham surgery with tumor incision but no resection. The timing and extent of IL-6 release in the tumor and/or serum was measured using enzyme-linked immunosorbent assay (ELISA) and compared to that measured in the serum of 27 consecutive, prospectively enrolled patients with malignant pleural mesothelioma (MPM) who underwent macroscopic complete resection (MCR). RESULTS MPM patients showed a significant increase in IL-6 at the time MCR was completed. Similarly, IL-6 increased in the tumor and serum of mice treated with surgical resections. However, investigations that combine resection with another therapy make it necessary to grow tumors for resection to a larger volume than those that receive secondary therapy alone. As the larger size may alter tumor biology independent of the effects of surgical injury, we assessed the tumor incision model. In this model, tumor levels of IL-6 significantly increased after tumor incision. CONCLUSION The tumor incision model induces IL-6 release as is seen in the surgical setting, yet it avoids the limitations of surgical resection models. Potential mechanisms by which surgical induction of inflammation and IL-6 could alter the nature and efficacy of tumor response to PDT are reviewed. These include a wide spectrum of molecular and cellular mechanisms through which surgically-induced IL-6 could change the effectiveness of therapies that are combined with surgery. The tumor incision model can be employed for novel investigations of the effects of surgically-induced, acute inflammation on therapeutic response to PDT (or potentially other therapies). Lasers Surg. Med. 50:440-450, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mary Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Luis J Montaner
- Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Melissa J Culligan
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sally McNulty
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Joseph S Friedberg
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Charles B Simone
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
2
|
Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg Med 2018; 50:491-498. [DOI: 10.1002/lsm.22810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mladen Korbelik
- Department of Integrative OncologyBritish Columbia Cancer Agency VancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Henriquez A, House J, Miller DB, Snow SJ, Fisher A, Ren H, Schladweiler MC, Ledbetter AD, Wright F, Kodavanti UP. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation. Toxicol Appl Pharmacol 2017. [PMID: 28623178 DOI: 10.1016/j.taap.2017.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED) or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effects of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM) prior to their exposure to air or ozone (1ppm), 4h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and PI3K-AKT. Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced increases in lung Il6 in SHAM rats coincided with neutrophilic inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of Ifnγ and Il-4, the IL-4 protein and ratio of IL-4 to IFNγ (IL-4/IFNγ) proteins increased suggesting a tendency for a Th2 response. This did not occur in ADREX and DEMED rats. We demonstrate that ozone-induced lung injury and neutrophilic inflammation require the presence of circulating epinephrine and corticosterone, which transcriptionally regulates signaling mechanisms involved in this response.
Collapse
Affiliation(s)
- Andres Henriquez
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Desinia B Miller
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Hongzu Ren
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Fred Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
4
|
Abstract
Photodynamic therapy (PDT) combines visible light and photosensitizing dyes. Different animal models have been used to test PDT for cancer, infectious disease and cardiovascular disease. Mouse models of tumours include subcutaneous, orthotopic, syngeneic, xenograft, autochthonous and genetically modified. Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals.
Collapse
|
5
|
Pizova K, Bajgar R, Fillerova R, Kriegova E, Cenklova V, Langova K, Konecny P, Kolarova H. C-MYC and C-FOS expression changes and cellular aspects of the photodynamic reaction with photosensitizers TMPyP and ClAlPcS2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 142:186-96. [PMID: 25545333 DOI: 10.1016/j.jphotobiol.2014.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is based on the tumor-selective accumulation of photosensitizer followed by irradiation with light of an appropriate wavelength. After irradiation and in the presence of oxygen, photosensitizer induces cellular damage. The aim of this study was to evaluate effects of two photosensitizers TMPyP and ClAlPcS2 on cell lines to obtain better insight into their mechanisms of action. We determined cell viability, reactive oxygen species (ROS) generation and changes in expression levels of two important early response genes, C-MYC and C-FOS, on tumor MCF7 (human breast adenocarcinoma) and G361 (human melanoma) cell lines and non-tumor BJ cell line (human fibroblast) after photodynamic reaction with TMPyP and ClAlPcS2 as photosensitizers. In addition TMPyP and ClAlPcS2 cellular uptake and clearance and antioxidant capacity of the mentioned cell lines were investigated. We found appropriate therapeutic doses and confirmed that both tested photosensitizers are photodynamically efficient in treatment used cells in vitro. TMPyP is more efficient; it had higher ROS production and toxicity after irradiation by intermediate therapeutic doses than ClAlPcS2. We revealed that both TMPyP and ClAlPcS2-PDT increased C-FOS expression on tumor cell lines (G361 and MCF7), but not on non-tumor BJ cell line. Conversely, both TMPyP and ClAlPcS2-PDT decreased C-MYC expression on non-tumor BJ cell line but not on tumor cell lines. As first we tested these photosensitizers in such extent and we believe that it can help to better understand mechanisms of PDT and increase its efficiency and applicability.
Collapse
Affiliation(s)
- Klara Pizova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 77900 Olomouc, Czech Republic.
| | - Robert Bajgar
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 77900 Olomouc, Czech Republic
| | - Regina Fillerova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Vera Cenklova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 77900 Olomouc, Czech Republic
| | - Katerina Langova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Petr Konecny
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 77900 Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 77900 Olomouc, Czech Republic
| |
Collapse
|
6
|
Korbelik M, Zhang W, Saw KM, Szulc ZM, Bielawska A, Separovic D. Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:72-7. [PMID: 23911762 DOI: 10.1016/j.jphotobiol.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/01/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is known to alter the expression of various genes in treated cells. This prompted us to examine the activity of genes encoding two important enzymes in sphingolipid (SL) metabolism, dihydroceramide desaturase (DES) and sphingosine kinase (SPHK), in mouse SCCVII tumor cells treated by PDT using either the porphyrin-based photosensitizer Photofrin or silicon phthalocyanine Pc4. The results revealed that PDT induced an upregulation in the expression of two major isoforms of both genes (DES1 and DES2 as well as SPHK1 and SPHK2). While the changes were generally moderate (2-3-fold gains), the increase in DES2 expression was more pronounced and it was much greater with Photofrin-PDT than with Pc4-PDT (over 23-fold vs. less than 5-fold). Combining either Photofrin-PDT or Pc4-PDT with the cationic C16-ceramide LCL30 (20mg/kg i.p.) for treatment of subcutaneously growing SCCVII tumors rendered important differences in the therapy outcome. Photofrin-PDT, used at a dose that attained good initial response but no tumor cures, produced 50% cures when combined with a single LCL30 treatment. In contrast, the same LCL30 treatment combined with Pc4-PDT had no significant effect on tumor response. The optimal timing of LCL30 injection was immediately after Photofrin-PDT. The therapeutic benefit was lost when LCL30 was given in two 20mg/kg injections encompassing intervals before and after PDT. LCL85, the cationic B13 ceramide analogue and SL-modulating agent, also increased cure rates of Photofrin-PDT treated tumors, but the therapeutic benefit was less pronounced than with LCL30. These results with LCL30 and LCL85, and our previous findings for LCL29 (another SL analogue), assert the potential of SLs for use as adjuvants to augment the efficacy of PDT-mediated tumor destruction.
Collapse
|
7
|
Merchant S, Korbelik M. Upregulation of genes for C-reactive protein and related pentraxin/complement proteins in photodynamic therapy-treated human tumor cells: enrolment of PI3K/Akt and AP-1. Immunobiology 2013; 218:869-74. [PMID: 23182717 DOI: 10.1016/j.imbio.2012.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/21/2012] [Accepted: 10/17/2012] [Indexed: 11/25/2022]
Abstract
Treatment of mouse tumors by photodynamic therapy (PDT) was reported to trigger the production of serum amyloid P component (SAP), a prototypic acute phase reactant in the mouse, that occurs in the targeted tumor as well as distant sites dominated by host's liver. It was also shown that the SAP gene becomes upregulated and protein produced in mouse tumor cells treated by PDT in vitro. Present study revealed that, in addition to SAP, increased expression of genes encoding related pentraxin and complement proteins, including PTX3, C1q and ficolin B, can be found in mouse LLC tumor cells treated by PDT. Since in humans C-reactive protein (CRP) is more important acute phase reactant than SAP, the expression of gene encoding this pentraxin protein was examined in human lung tumor A549 cells treated by PDT. The results demonstrated a PDT dose-dependent upregulation of CRP gene, as well as of PTX3 and ficolin 1 genes in these cells. Investigation into the signal transduction process underlying PDT-induced human CRP gene upregulation using specific inhibitors of critical signaling elements revealed critical role played by PI3K/Akt pathway. Downstream DNA transcription factor largely responsible for this increased CRP gene expression is AP-1 with possible cooperation of HIF-1. It was suggested that cells sensing to have sustained a mortal injury from PDT can turn on molecular programs ensuring that the disposal of their corpses (facilitated by CRP and related pentraxin and complement components) is swift and efficient.
Collapse
|
8
|
Korbelik M, Merchant S. Photodynamic therapy-generated cancer vaccine elicits acute phase and hormonal response in treated mice. Cancer Immunol Immunother 2012; 61:1387-94. [PMID: 22270715 PMCID: PMC11029775 DOI: 10.1007/s00262-012-1206-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/12/2012] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT)-generated cancer vaccines have shown promising results in preclinical studies and are being introduced in the clinics. Using an SCCVII mouse squamous cell carcinoma-based whole-cell autologous PDT vaccine model developed in our previous work, we have examined systemic effects in vaccinated mice that could be related to the induction of acute phase response. The upregulation of gene encoding serum amyloid P component (prototypic mouse acute phase reactant) was detected in the liver and to a lesser degree in the tumor of vaccinated mice at 24 h post-PDT vaccine treatment. A strong upregulation of gene for heat shock protein 70 was found in both the liver and tumor of mice at 4 h after their PDT vaccine treatment. Changes in the expression of genes for glucocorticoid-induced leucine zipper and serum- and glucocorticoid-regulated kinase 1 that are highly responsive to glucocorticoid modulation were uncovered in both the tumor and liver of vaccinated mice. A rise in the levels of serum corticosterone was detected in mice at 24 h after PDT vaccine treatment. The results indicate that a sudden appearance of a large number of PDT vaccine cells elicits host responses for securing their optimized clearance, which in addition to producing seminal acute phase reactants includes the engagement of glucocorticoid hormones. It is becoming increasingly clear that a consummate execution of this process of PDT vaccine cell removal is critical for tumor antigen recognition and the attainment of potent antitumor immune response.
Collapse
Affiliation(s)
- Mladen Korbelik
- British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | |
Collapse
|
9
|
Merchant S, Korbelik M. Heat shock protein 70 is acute phase reactant: response elicited by tumor treatment with photodynamic therapy. Cell Stress Chaperones 2011; 16:153-62. [PMID: 20865355 PMCID: PMC3059789 DOI: 10.1007/s12192-010-0227-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022] Open
Abstract
Oxidative stress in photodynamic therapy (PDT)-treated tumor cells is known to instigate a strong upregulation of the expression of heat shock proteins. However, the treatment of mouse Lewis lung carcinoma (LLC) cells with Photofrin™ PDT resulted in the upregulation of heat shock protein 70 (Hsp70) gene not only in these cells but also in co-incubated untreated Hepa 1-6 cells. To investigate whether this phenomenon extends in vivo, LLC tumors growing in C57BL/6 mice were treated with Photofrin™ PDT. The tumors and the livers from the mice were collected at 4, 8, or 24 h after therapy for quantitative reverse transcriptase polymerase chain reaction-based analysis of Hsp70 gene expression. Increased Hsp70 gene expression was detected in both the tumor and liver tissues and was most pronounced at 4 h after PDT. This effect was inhibited by treatment of host mice with glucocorticoid synthesis inhibitor metyrapone. Hsp70 protein levels in the livers of mice bearing PDT-treated tumors gradually decreased after therapy while serum levels increased at 4 h after therapy and then continually decreased. The exposure of in vitro PDT-treated LLC cells to Hsp70 and subsequent flow cytometry analysis revealed binding of this protein to cells that was dependent on PDT dose and more pronounced with dying than viable cells. Thus, following the induction of tumor injury by PDT, Hsp70 can be produced in the liver and spleen as acute phase reactant and released into circulation, from where it can be rapidly sequestered to damaged tumor tissue to facilitate the disposal of dying cells.
Collapse
Affiliation(s)
- Soroush Merchant
- British Columbia Cancer Agency, B.C. Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
| | - Mladen Korbelik
- British Columbia Cancer Agency, B.C. Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
| |
Collapse
|
10
|
Firczuk M, Nowis D, Gołąb J. PDT-induced inflammatory and host responses. Photochem Photobiol Sci 2011; 10:653-63. [PMID: 21258727 DOI: 10.1039/c0pp00308e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is used in the management of neoplastic and nonmalignant diseases. Its unique mechanisms of action include direct cytotoxic effects exerted towards tumor cells, destruction of tumor and peritumoral vasculature and induction of local acute inflammatory reaction. The latter develops in response to (1) damage to tumor and stromal cells that leads to the release of cell death-associated molecular patterns (CDAMs) or damage associated molecular patterns (DAMPs), (2) early vascular changes that include increased vascular permeability, vascular occlusion, and release of vasoactive and proinflammatory mediators, (3) activation of alternative pathway of complement leading to generation of potent chemotactic factors, and (4) induction of signaling cascades and transcription factors that trigger secretion of cytokines, matrix metalloproteinases, or adhesion molecules. The majority of studies indicate that induction of local inflammatory response contributes to the antitumor effects of PDT and facilitates development of systemic immunity. However, the degree of PDT-induced inflammation and its subsequent contribution to its antitumor efficacy depend on multiple parameters, such as chemical nature, concentration and subcellular localization of the photosensitizers, the spectral characteristics of the light source, light fluence and fluence rate, oxygenation level, and tumor type. Identification of detailed molecular mechanisms and development of therapeutic approaches modulating PDT-induced inflammation will be necessary to tailor this treatment to particular clinical conditions.
Collapse
Affiliation(s)
- Małgorzata Firczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
11
|
Abstract
The development of photodynamic therapy (PDT)-generated cancer vaccines is potentially one of the most significant achievements in the field of PDT. Employing vaccine protocols optimizes the capacity of PDT of inducing a strong immune response against treated tumor due to the establishment of highly favourable conditions for maximizing the avidity of the immune reaction while sustaining and prolonging its tumor-destroying attack. While the introduction of PDT vaccines into the clinics and testing on patients is still in a very early phase, much work can still be done on further improvement of the potency of PDT vaccines. Considerable advances can be expected by identifying the most effective adjuvants to be used with PDT vaccines, which will most likely be different with different types of cancerous lesions.
Collapse
|