1
|
da Silva Lira Filho A, Lafleur A, Alvarez F, Piccirillo CA, Olivier M. Implication of the Annexin 1/FPR axis in leishmanial exosome-mediated Leishmania major skin hyperpathogenesis. Front Immunol 2024; 15:1436151. [PMID: 39076982 PMCID: PMC11284082 DOI: 10.3389/fimmu.2024.1436151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
2
|
Ramos C, Oehler R. Clearance of apoptotic cells by neutrophils in inflammation and cancer. Cell Death Discov 2024; 10:26. [PMID: 38218739 PMCID: PMC10787834 DOI: 10.1038/s41420-024-01809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
When a cell dies of apoptosis, it is eliminated either by neighbouring cells or by attracted professional phagocytes. Although it was generally believed that neutrophils also have the ability to perform efferocytosis, their contribution to the clearance of apoptotic cells was considered less important compared with macrophages. Therefore, this ability of neutrophils remained unexplored for a long time. Over the past decade, it has been shown that during inflammation, neutrophils contribute significantly to the clearance of apoptotic neutrophils that accumulate in large numbers at the site of tissue damage. This "neutrophil cannibalism" is accompanied by inhibition of pro-inflammatory activities of these cells, such as respiratory burst and formation of neutrophil extracellular traps (NETs). Furthermore, efferocytosing neutrophils secrete anti-inflammatory mediators and mitogens including hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), vascular endothelial growth factors (VEGF), and transforming growth factor beta (TGFβ). Thus, efferocytosis by neutrophils is involved in resolution of inflammation. Recent research indicates that it plays also a role in cancer. Many different solid tumours contain aggregates of dead tumour cells that have undergone spontaneous apoptosis. Their extent correlates with poor clinical outcome in most cancer types. These clusters of apoptotic tumour cells are strongly infiltrated by tumour-associated neutrophils (TANs) that acquired an anti-inflammatory and pro-resolving polarization state. This review summarizes the potential consequences discussed in the current literature. Although the picture of the role of efferocytosis by neutrophils in inflammation and cancer is becoming clearer, many questions are still unexplored.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Lyngstadaas AV, Olsen MV, Bair J, Yang M, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Anti-Inflammatory and Pro-Resolving Actions of the N-Terminal Peptides Ac2-26, Ac2-12, and Ac9-25 of Annexin A1 on Conjunctival Goblet Cell Function. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1817-1832. [PMID: 37423551 PMCID: PMC10616711 DOI: 10.1016/j.ajpath.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
Annexin A1 (AnxA1) is the primary mediator of the anti-inflammatory actions of glucocorticoids. AnxA1 functions as a pro-resolving mediator in cultured rat conjunctival goblet cells to ensure tissue homeostasis through stimulation of intracellular [Ca2+] ([Ca2+]i) and mucin secretion. AnxA1 has several N-terminal peptides with anti-inflammatory properties of their own, including Ac2-26, Ac2-12, and Ac9-25. The increase in [Ca2+]i caused by AnxA1 and its N-terminal peptides in goblet cells was measured to determine the formyl peptide receptors used by the compounds and the action of the peptides on histamine stimulation. Changes in [Ca2+]i were determined by using a fluorescent Ca2+ indicator. AnxA1 and its peptides each activated formyl peptide receptors in goblet cells. AnxA1 and Ac2-26 at 10-12 mol/L and Ac2-12 at 10-9 mol/L inhibited the histamine-stimulated increase in [Ca2+]i, as did resolvin D1 and lipoxin A4 at 10-12 mol/L, whereas Ac9-25 did not. AnxA1 and Ac2-26 counter-regulated the H1 receptor through the p42/p44 mitogen-activated protein kinase/extracellular regulated kinase 1/2, β-adrenergic receptor kinase, and protein kinase C pathways, whereas Ac2-12 counter-regulated only through β-adrenergic receptor kinase. In conclusion, current data show that the N-terminal peptides Ac2-26 and Ac2-12, but not Ac9-25, share multiple functions with the full-length AnxA1 in goblet cells, including inhibition of histamine-stimulated increase in [Ca2+]i and counter-regulation of the H1 receptor. These actions suggest a potential pharmaceutical application of the AnxA1 N-terminal peptides Ac2-26 and Ac2-12 in homeostasis and ocular inflammatory diseases.
Collapse
Affiliation(s)
- Anne V Lyngstadaas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Markus V Olsen
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Menglu Yang
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tor P Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Irie M, Kabata H, Sasahara K, Kurihara M, Shirasaki Y, Kamatani T, Baba R, Matsusaka M, Koga S, Masaki K, Miyata J, Araki Y, Kikawada T, Kabe Y, Suematsu M, Yamagishi M, Uemura S, Moro K, Fukunaga K. Annexin A1 is a cell-intrinsic metalloregulator of zinc in human ILC2s. Cell Rep 2023; 42:112610. [PMID: 37294636 DOI: 10.1016/j.celrep.2023.112610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/14/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) produce large amounts of type 2 cytokines including interleukin-5 (IL-5) and IL-13 in response to various stimuli, causing allergic and eosinophilic diseases. However, the cell-intrinsic regulatory mechanisms of human ILC2s remain unclear. Here, we analyze human ILC2s derived from different tissues and pathological conditions and identify ANXA1, encoding annexin A1, as a commonly highly expressed gene in non-activated ILC2s. The expression of ANXA1 decreases when ILC2s activate, but it increases autonomously as the activation subsides. Lentiviral vector-based gene transfer experiments show that ANXA1 suppresses the activation of human ILC2s. Mechanistically, ANXA1 regulates the expression of the metallothionein family genes, including MT2A, which modulate intracellular zinc homeostasis. Furthermore, increased intracellular zinc levels play an essential role in the activation of human ILC2s by promoting the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and GATA3 expression. Thus, the ANXA1/MT2A/zinc pathway is identified as a cell-intrinsic metalloregulatory mechanism for human ILC2s.
Collapse
Affiliation(s)
- Misato Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kotaro Sasahara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Momoko Kurihara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Kamatani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; Division of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo 113-8519, Japan
| | - Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Koga
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutomo Araki
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Toru Kikawada
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- WPI Bio2Q Research Center, Keio University and Central Institute for Experimental Medicine, Kawasaki, Kanagawa 210-0821, Japan
| | - Mai Yamagishi
- Live Cell Diagnosis, Ltd., Asaka, Saitama 351-0022, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, Suita, Osaka 565-0871, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Spite M, Fredman G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. ADVANCES IN PHARMACOLOGY 2023; 97:257-281. [DOI: 10.1016/bs.apha.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, Crichton S, Goodyear CS. Annexin-A1; the culprit or the solution? Immunology 2022; 166:2-16. [PMID: 35146757 PMCID: PMC9426623 DOI: 10.1111/imm.13455] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐A1 has a well‐defined anti‐inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid‐induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin‐A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin‐A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin‐A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lauren Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Lewis Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Kathryn McCall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aysin Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Fiona Dempsey
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Scott Crichton
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
7
|
Julliard WA, Myo YPA, Perelas A, Jackson PD, Thatcher TH, Sime PJ. Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022; 59:101605. [PMID: 35660338 PMCID: PMC9962762 DOI: 10.1016/j.smim.2022.101605] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Walker A Julliard
- Department of Surgery, Virginia Commonwealth University, Richmond VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA
| | - Apostolos Perelas
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Peter D. Jackson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Thomas H. Thatcher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Perez-Hernandez J, Chiurchiù V, Perruche S, You S. Regulation of T-Cell Immune Responses by Pro-Resolving Lipid Mediators. Front Immunol 2021; 12:768133. [PMID: 34868025 PMCID: PMC8635229 DOI: 10.3389/fimmu.2021.768133] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Both the initiation and the resolution of inflammatory responses are governed by the sequential activation, migration, and control/suppression of immune cells at the site of injury. Bioactive lipids play a major role in the fine-tuning of this dynamic process in a timely manner. During inflammation and its resolution, polymorphonuclear cells (PMNs) and macrophages switch from producing pro-inflammatory prostaglandins and leukotrienes to specialized pro-resolving lipid mediators (SPMs), namely, lipoxins, resolvins, protectins, and maresins, which are operative at the local level to limit further inflammation and tissue injury and restore homeostasis. Accumulating evidences expand now the role and actions of these lipid mediators from innate to adaptive immunity. In particular, SPMs have been shown to contribute to the control of chronic inflammation, and alterations in their production and/or function have been associated with the persistence of several pathological conditions, including autoimmunity, in human and experimental models. In this review, we focus on the impact of pro-resolving lipids on T cells through their ability to modulate T-cell responses. In particular, the effects of the different families of SPMs to restrain effector T-cell functions while promoting regulatory T cells will be reviewed, along with the underlying mechanisms. Furthermore, the emerging concept of SPMs as new biological markers for disease diagnostic and progression and as putative therapeutic tools to regulate the development and magnitude of inflammatory and autoimmune diseases is discussed.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- Université de Paris, Institut Cochin, CNRS, Institut National de la Santé et de le Recherche Médicale (INSERM), Paris, France.,Departament of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, Rome, Italy.,Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Sylvain Perruche
- Université de Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang (EFS) Bourgogne-Franche Comté (BFC), Unité Mixte de Recherche (UMR)1098 Research on Interaction between Graft, Host and Tumor (RIGHT), Interactions Hôte Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire Integrated Center for REsearch in inflammatory diseASes (InCREASe), Besançon, France.,MED'INN'Pharma, Besançon, France
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, Institut National de la Santé et de le Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
9
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
10
|
Lyngstadaas AV, Olsen MV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Pro-Resolving Mediator Annexin A1 Regulates Intracellular Ca 2+ and Mucin Secretion in Cultured Goblet Cells Suggesting a New Use in Inflammatory Conjunctival Diseases. Front Immunol 2021; 12:618653. [PMID: 33968020 PMCID: PMC8100605 DOI: 10.3389/fimmu.2021.618653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
The amount of mucin secreted by conjunctival goblet cells is regulated to ensure the optimal level for protection of the ocular surface. Under physiological conditions lipid specialized pro-resolving mediators (SPM) are essential for maintaining tissue homeostasis including the conjunctiva. The protein Annexin A1 (AnxA1) can act as an SPM. We used cultured rat conjunctival goblet cells to determine if AnxA1 stimulates an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion and to identify the signaling pathways. The increase in [Ca2+]i was determined using fura2/AM and mucin secretion was measured using an enzyme-linked lectin assay. AnxA1 stimulated an increase in [Ca2+]i and mucin secretion that was blocked by the cell-permeant Ca2+ chelator BAPTA/AM and the ALX/FPR2 receptor inhibitor BOC2. AnxA1 increased [Ca2+]i to a similar extent as the SPMs lipoxin A4 and Resolvin (Rv) D1 and histamine. The AnxA1 increase in [Ca2+]i and mucin secretion were inhibited by blocking the phospholipase C (PLC) pathway including PLC, the IP3 receptor, the Ca2+/ATPase that causes the intracellular Ca2+ stores to empty, and blockade of Ca2+ influx. Inhibition of protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase also decreased the AnxA1-stimulated increase in [Ca2+]i and mucin secretion. In contrast inhibitors of ERK 1/2, phospholipase A2 (PLA2), and phospholipase D (PLD) did not alter AnxA1-stimulated increase in [Ca2+]i, but did inhibit mucin secretion. Activation of protein kinase A did not decrease either the AnxA1-stimulated rise in [Ca2+]i or secretion. We conclude that in health, AnxA1 contributes to the mucin layer of the tear film and ocular surface homeostasis by activating the PLC signaling pathway to increase [Ca2+]i and stimulate mucin secretion and ERK1/2, PLA2, and PLD to stimulate mucin secretion from conjunctival goblet cells.
Collapse
Affiliation(s)
- Anne V Lyngstadaas
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Markus V Olsen
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jeffrey A Bair
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Robin R Hodges
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tor P Utheim
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Darlene A Dartt
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Annexin A1 Is Required for Efficient Tumor Initiation and Cancer Stem Cell Maintenance in a Model of Human Breast Cancer. Cancers (Basel) 2021; 13:cancers13051154. [PMID: 33800279 PMCID: PMC7962654 DOI: 10.3390/cancers13051154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) has a poor outcome compared to the other major breast cancer subtypes and new therapies are needed. We sought to clarify the functions of a ubiquitous protein, Annexin A1, in the development and progression of TNBC. We found that Annexin A1 expression correlated with poor patient prognosis in basal-like breast tumors and also in the basal like-2 subset of TNBCs. Stable knockdown of Annexin A1 attenuated the growth of SUM149 xenografts, which model basal-like 2 tumors. In a polyoma middle T antigen-driven allograft model of breast cancer, Annexin A1 depletion markedly delayed tumor formation, induced epithelial to mesenchymal transition and upregulated basal markers. Finally, loss of Annexin A1 resulted in the loss of a discrete CD24+/Sca1− population containing putative tumor-initiating cells. Collectively, our data demonstrate a novel cell-autonomous role for Annexin A1 in the promotion of tumor-forming capacity in certain TNBC tumors. Abstract Triple-negative breast cancer (TNBC) has a poor outcome compared to other breast cancer subtypes, and new therapies that target the molecular alterations driving tumor progression are needed. Annexin A1 is an abundant multi-functional Ca2+ binding and membrane-associated protein. Reported roles of Annexin A1 in breast cancer progression and metastasis are contradictory. Here, we sought to clarify the functions of Annexin A1 in the development and progression of TNBC. The association of Annexin A1 expression with patient prognosis in subtypes of TNBC was examined. Annexin A1 was stably knocked down in a panel of human and murine TNBC cell lines with high endogenous Annexin A1 expression that were then evaluated for orthotopic growth and spontaneous metastasis in vivo and for alterations in cell morphology in vitro. The impact of Annexin A1 knockdown on the expression of genes involved in mammary epithelial cell differentia tion and epithelial to mesenchymal transition was also determined. Annexin A1 mRNA levels correlated with poor patient prognosis in basal-like breast tumors and also in the basal-like 2 subset of TNBCs. Unexpectedly, loss of Annexin A1 expression had no effect on either primary tumor growth or spontaneous metastasis of MDA-MB-231_HM xenografts, but abrogated the growth rate of SUM149 orthotopic tumors. In an MMTV-PyMT driven allograft model of breast cancer, Annexin A1 depletion markedly delayed tumor formation in both immuno-competent and immuno-deficient mice and induced epithelial to mesenchymal transition and upregulation of basal markers. Finally, loss of Annexin A1 resulted in the loss of a discrete CD24+/Sca1− population containing putative tumor initiating cells. Collectively, our data demonstrate a novel cell-autonomous role for Annexin A1 in the promotion of tumor-forming capacity in a model of human breast cancer and suggest that some basal-like TNBCs may require high endogenous tumor cell Annexin A1 expression for continued growth.
Collapse
|
12
|
Annexin A1 Attenuates Neutrophil Migration and IL-6 Expression through Fpr2 in a Mouse Model of Streptococcus suis-Induced Meningitis. Infect Immun 2021; 89:IAI.00680-20. [PMID: 33318141 PMCID: PMC8097268 DOI: 10.1128/iai.00680-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a crucial pathogenic cause of bacterial meningitis, a life-threatening disease with neurological sequelae and high rates of mortality. Inflammation triggered by S. suis infection must be precisely regulated to prevent further tissue damage. Streptococcus suis serotype 2 is a crucial pathogenic cause of bacterial meningitis, a life-threatening disease with neurological sequelae and high rates of mortality. Inflammation triggered by S. suis infection must be precisely regulated to prevent further tissue damage. As a glucocorticoid anti-inflammatory mediator, annexin A1 (AnxA1) mainly acts through formyl peptide receptor 2 (Fpr2) to alleviate inflammation in the peripheral system. In this study, we evaluated the roles of AnxA1 and Fpr2 in a mouse model of S. suis meningitis created via intracisternal infection in Fpr2-deficient (Fpr2−/−) and wild-type (WT) mice. We revealed that Fpr2−/− mice were highly susceptible to S. suis meningitis, displaying increased inflammatory cytokine levels, bacterial dissemination, and neutrophil migration compared with WT mice. Additionally, AnxA1 exerted anti-inflammatory effects through Fpr2, such as attenuation of leukocyte infiltration, inflammatory mediator production, and astrocyte or microglial activation in the brain. Importantly, we found that the antimigratory function of AnxA1 decreases neutrophil adherence to the endothelium through Fpr2. Finally, an in vitro study revealed that AnxA1 potentially suppresses interleukin-6 (IL-6) expression through the Fpr2/p38/COX-2 pathway. These data demonstrated that Fpr2 is an anti-inflammatory receptor that regulates neutrophil migration in mice with S. suis meningitis and identified AnxA1 as a potential therapeutic option.
Collapse
|
13
|
Vieira C, Salm DC, Horewicz VV, Ludtke DD, Emer AA, Koerich JF, Mazzardo G, Elias S, Moré AOO, Mazzardo-Martins L, Cidral-Filho FJ, Reed WR, Piovezan AP, Martins DF. Electroacupuncture decreases inflammatory pain through a pro-resolving mechanism involving the peripheral annexin A1-formyl peptide receptor 2/ALX-opioid receptor pathway. Pflugers Arch 2021; 473:683-695. [PMID: 33474635 DOI: 10.1007/s00424-020-02502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
The pro-resolving mechanism is a recently described endogenous process that controls inflammation. The present study evaluated components of this mechanism, including annexin 1 (ANXA1) and the formyl peptide receptor 2/ALX (FPR2/ALX) receptor, in the antihyperalgesic effect induced by electroacupuncture (EA) in an animal model of persistent peripheral inflammation. Male Swiss mice underwent intraplantar (i.pl.) injection with complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed with von Frey monofilaments. Animals were treated with EA (2-10 Hz, ST36-SP6) or subcutaneous BML-111 injection (FPR2/ALX agonist) for 5 consecutive days. In a separate set of experiments, on the first and fifth days after CFA injection, animals received i.pl. WRW4 (FPR2/ALX antagonist) or naloxone (non-selective opioid receptor antagonist) before EA or BML-111 injection. Paw protein levels of FPR2/ALX and ANXA1 were evaluated on the second day after CFA injection by western blotting technique. EA and BML-111 reduced mechanical hyperalgesia. I.pl. naloxone or WRW4 prevented the antihyperalgesic effect induced by either EA or BML-111. EA increased ANXA1 but did not alter FPR2/ALX receptor levels in the paw. Furthermore, i.pl. pretreatment with WRW4 prevented the increase of ANXA1 levels induced by EA. This work demonstrates that the EA antihyperalgesic effect on inflammatory pain involves the ANXA1/FPR2/ALX pro-resolution pathway. This effect appears to be triggered by the activation of FPR2/ALX receptors and crosstalk communication with the opioid system.
Collapse
Affiliation(s)
- Cintia Vieira
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Aline A Emer
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Júlia F Koerich
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Gustavo Mazzardo
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Sayron Elias
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Francisco J Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - William R Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA.,Rehabilitation Science Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil. .,Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
14
|
Xu J, Yu C, Luo J, Guo Y, Cheng C, Zhang H. The role and mechanism of the annexin A1 peptide Ac2-26 in rats with cardiopulmonary bypass lung injury. Basic Clin Pharmacol Toxicol 2021; 128:719-730. [PMID: 33455036 PMCID: PMC8247988 DOI: 10.1111/bcpt.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
The main causes of lung injury after cardiopulmonary bypass (CPB) are systemic inflammatory response syndrome (SIRS) and pulmonary ischaemia‐reperfusion injury (IR‐I). SIRS and IR‐I are often initiated by a systemic inflammatory response. The present study investigated whether the annexin A1 (ANX‐A1) peptidomimetic Ac2‐26 by binding to formyl peptide receptors (FPRs) inhibit inflammatory cytokines and reduce lung injury after CPB. Male rats were randomized to the following five groups (n = 6, each): sham, exposed to pulmonary ischaemic‐reperfusion (IR‐I), IR‐I plus Ac2‐26, IR‐I plus the FPR antagonist, BoC2 (N‐tert‐butyloxycarbonyl‐Phe‐Leu‐Phe‐Leu‐Phe) and IR‐I plus Ac2‐26 and BoC2. Treatment with Ac2‐26 improved the oxygenation index, an effect blocked by BoC2. Histopathological analysis of the lung tissue revealed that the degree of lung injury was significantly less (P < 0.05) in the Ac2‐26‐treated rats compared to the other experimental groups exposed to IR‐I. Ac2‐26 treatment reduced the levels of the inflammatory cytokines TNF‐α, IL‐1β, ICAM‐1 and NF‐κB‐p65 (P < 0.05) compared to the vehicle‐treated group exposed to IR‐I. In conclusion, the annexin A1 (ANX‐A1) peptidomimetic Ac2‐26 by binding to formyl peptide receptors inhibit inflammatory cytokines and reduce ischaemic‐reperfusion lung injury after cardiopulmonary bypass.
Collapse
Affiliation(s)
- Jiyang Xu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chengkun Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Junli Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuhan Guo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chi Cheng
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
15
|
Formyl Peptide Receptor 1 Signaling in Acute Inflammation and Neural Differentiation Induced by Traumatic Brain Injury. BIOLOGY 2020; 9:biology9090238. [PMID: 32825368 PMCID: PMC7563302 DOI: 10.3390/biology9090238] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a shocking disease frequently followed by behavioral disabilities, including risk of cerebral atrophy and dementia. N-formylpeptide receptor 1 (FPR1) is expressed in cells and neurons in the central nervous system. It is involved in inflammatory processes and during the differentiation process in the neural stem cells. We investigate the effect of the absence of Fpr1 gene expression in mice subjected to TBI from the early stage of acute inflammation to neurogenesis and systematic behavioral testing four weeks after injury. C57BL/6 animals and Fpr1 KO mice were subjected to TBI and sacrificed 24 h or four weeks after injury. Twenty-four hours after injury, TBI Fpr1 KO mice showed reduced histological impairment, tissue damage and acute inflammation (MAPK activation, NF-κB signaling induction, NRLP3 inflammasome pathway activation and oxidative stress increase). Conversely, four weeks after TBI, the Fpr1 KO mice showed reduced survival of the proliferated cells in the Dentate Gyrus compared to the WT group. Behavioral analysis confirmed this trend. Moreover, TBI Fpr1 KO animals displayed reduced neural differentiation (evaluated by beta-III tubulin expression) and upregulation of astrocyte differentiation (evaluated by GFAP expression). Collectively, our study reports that, immediately after TBI, Fpr1 increased acute inflammation, while after four weeks, Fpr1 promoted neurogenesis.
Collapse
|
16
|
Quoseena M, Vuppaladadium S, Hussain S, Banu S, Bharathi S, Idris MM. Functional role of annexins in zebrafish caudal fin regeneration – A gene knockdown approach in regenerating tissue. Biochimie 2020; 175:125-131. [DOI: 10.1016/j.biochi.2020.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
|
17
|
Mihaylova N, Bradyanova S, Chipinski P, Chausheva S, Kyurkchiev D, Tchorbanov AI. Monoclonal antibody therapy that targets phospholipid-binding protein delays lupus activity in MRL/lpr mice. Scand J Immunol 2020; 92:e12915. [PMID: 32533866 DOI: 10.1111/sji.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus is an autoimmune syndrome characterized by the development of autoantibodies to a wide range of antigens. Together with B cells, respective self-reactive T cells have an important contribution in disease progression as being responsible for inflammatory cytokines secretion, B cell activation and promoting amplification of the autoimmune response. Annexin A1 is expressed by many cell types and binds to phospholipids in a Ca2+ -dependent manner. Abnormal expression of annexin A1 was found on activated B and T cells in both murine and human autoimmunity suggesting its potential role as a therapeutic target. In the present study, we have investigated the possibility to suppress autoimmune manifestation in spontaneous mouse model of lupus using anti-annexin A1 antibody. Groups of lupus-prone MRL/lpr mice were treated with the anti-annexin A1 monoclonal antibody, and the disease activity and survival of the animals were following up. Flow cytometry, ELISA assays, and histological and immunofluorescence kidney analyses were used to determine the levels of Annexin A1 expression, cytokines, anti-dsDNA antibodies and kidney injuries. The administration of this monoclonal antibody to MRL/lpr mice resulted in suppression of IgG anti-dsDNA antibody production, modulated IL-10 secretion, decreased disease activity and prolonged survival compared with the control group.
Collapse
Affiliation(s)
- Nikolina Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Silviya Bradyanova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petroslav Chipinski
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stela Chausheva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, University Hospital 'Sv.I.Rilski', Medical University Sofia, Sofia, Bulgaria
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
18
|
Firinu D, Arba M, Vincenzoni F, Iavarone F, Costanzo G, Cabras T, Castagnola M, Messana I, Del Giacco SR, Sanna MT. Proteomic Analysis of the Acid-Insoluble Fraction of Whole Saliva from Patients Affected by Different Forms of Non-histaminergic Angioedema. J Clin Immunol 2020; 40:840-850. [PMID: 32519288 DOI: 10.1007/s10875-020-00802-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
|
19
|
Upregulation of annexin A1 protein expression in the intratumoral vasculature of human non-small-cell lung carcinoma and rodent tumor models. PLoS One 2020; 15:e0234268. [PMID: 32497150 PMCID: PMC7272081 DOI: 10.1371/journal.pone.0234268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Annexin A1 (anxA1) is an immunomodulatory protein that has been proposed as a tumor vascular target for antitumor biologic agents, yet to date the vascular expression of anxA1 in specific tumor indications has not been systematically assessed. Attempts to evaluate vascular anxA1 expression by immunohistochemistry are complicated by a lack of available antibodies that are both specific for anxA1 and bind the N-terminal–truncated form of anxA1 that has previously been identified in tumor vasculature. To study the vascular expression pattern of anxA1 in non–small-cell lung carcinoma (NSCLC), we isolated an antibody capable of binding N-terminal–truncated anxA127-346 and employed it in immunohistochemical studies of human lung specimens. Lung tumor specimens evaluated with this antibody revealed vascular (endothelial) anxA1 expression in five of eight tumor samples studied, but no vascular anxA1 expression was observed in normal lung tissue. Tumor microarray analysis further demonstrated positive vascular staining for anxA1 in 30 of 80 NSCLC samples, and positive staining of neoplastic cells was observed in 54 of 80 samples. No correlation was observed between vascular and parenchymal anxA1 expression. Two rodent tumor models, B16-F10 and Py230, were determined to have upregulated anxA1 expression in the intratumoral vasculature. These data validate anxA1 as a potential vascular anti-tumor target in a subset of human lung tumors and identify rodent models which demonstrate anxA1 expression in tumor vasculature.
Collapse
|
20
|
Colamatteo A, Maggioli E, Azevedo Loiola R, Hamid Sheikh M, Calì G, Bruzzese D, Maniscalco GT, Centonze D, Buttari F, Lanzillo R, Perna F, Zuccarelli B, Mottola M, Cassano S, Galgani M, Solito E, De Rosa V. Reduced Annexin A1 Expression Associates with Disease Severity and Inflammation in Multiple Sclerosis Patients. THE JOURNAL OF IMMUNOLOGY 2019; 203:1753-1765. [PMID: 31462505 DOI: 10.4049/jimmunol.1801683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
Chronic neuroinflammation is a key pathological hallmark of multiple sclerosis (MS) that suggests that resolution of inflammation by specialized proresolving molecules is dysregulated in the disease. Annexin A1 (ANXA1) is a protein induced by glucocorticoids that facilitates resolution of inflammation through several mechanisms that include an inhibition of leukocyte recruitment and activation. In this study, we investigated the ability of ANXA1 to influence T cell effector function in relapsing/remitting MS (RRMS), an autoimmune disease sustained by proinflammatory Th1/Th17 cells. Circulating expression levels of ANXA1 in naive-to-treatment RRMS subjects inversely correlated with disease score and progression. At the cellular level, there was an impaired ANXA1 production by CD4+CD25- conventional T and CD4+RORγt+ T (Th17) cells from RRMS subjects that associated with an increased migratory capacity in an in vitro model of blood brain barrier. Mechanistically, ANXA1 impaired monocyte maturation secondarily to STAT3 hyperactivation and potently reduced T cell activation, proliferation, and glycolysis. Together, these findings identify impaired disease resolution pathways in RRMS caused by dysregulated ANXA1 expression that could represent new potential therapeutic targets in RRMS.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Elisa Maggioli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Rodrigo Azevedo Loiola
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Madeeha Hamid Sheikh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Gaetano Calì
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Dario Bruzzese
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli," 80131 Naples, Italy
| | - Diego Centonze
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Buttari
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy
| | - Roberta Lanzillo
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Bruno Zuccarelli
- Unità Operativa Complessa di Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno, Centro Traumatologico Ortopedico, 80131 Naples, Italy; and
| | - Maria Mottola
- Unità Operativa Complessa di Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno, Centro Traumatologico Ortopedico, 80131 Naples, Italy; and
| | - Silvana Cassano
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Mario Galgani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Egle Solito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy; .,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; .,Unità di NeuroImmunologia, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
21
|
Han G, Lu K, Xu W, Zhang S, Huang J, Dai C, Sun G, Ye J. Annexin A1-mediated inhibition of inflammatory cytokines may facilitate the resolution of inflammation in acute radiation-induced lung injury. Oncol Lett 2019; 18:321-329. [PMID: 31289503 DOI: 10.3892/ol.2019.10317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
The present study evaluated the role of annexin A1 (ANXA1) in the treatment of acute radiation-induced lung injury (RILI) and investigated the mechanism of its action. The expression of ANXA1, interleukin-6 (IL-6) and myeloperoxidase (MPO) in the plasma of patients with RILI prior to and following hormonotherapy was assessed by enzyme-linked immunosorbent assay. The association of plasma ANXA1 concentration with clinical effect, and the correlation between the expression of ANXA1 and that of IL-6 and MPO were evaluated. ANXA1 was overexpressed or knocked down in a macrophage cell line, and its impact on IL-6 and MPO expression was measured. Following glucocorticoid hormonotherapy, patients with RILI exhibited a higher plasma concentration of ANXA1 compared with that prior to treatment, while IL-6 and MPO levels were lower. The concentration of ANXA1 in plasma was negatively correlated with IL-6 and MPO levels, with a correlation coefficient of -0.492 and -0.437, respectively (P<0.001). The increasing concentration of ANXA1 in plasma following treatment was associated with the clinical effect in patients with RILI (P=0.007). The expression levels of of IL-6 and MPO were inhibited both in the cytoplasm and in the culture solution, when ANXA1 expression was upregulated in a macrophage cell line. In conclusion, ANXA1 inhibited the synthesis and secretion of IL-6 and MPO inflammatory cytokines, indicating that ANXA1 may have therapeutic potential as a treatment target for RILI.
Collapse
Affiliation(s)
- Gaohua Han
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Kaijin Lu
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Wansong Xu
- Radiation Therapy Center, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Sihui Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Junxing Huang
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Chunlei Dai
- Medical Imaging Center, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Guangzhi Sun
- Radiation Therapy Center, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jun Ye
- Central Laboratory, The Fifth Affiliated Hospital of Nantong University, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
22
|
Duffney PF, Falsetta ML, Rackow AR, Thatcher TH, Phipps RP, Sime PJ. Key roles for lipid mediators in the adaptive immune response. J Clin Invest 2018; 128:2724-2731. [PMID: 30108196 DOI: 10.1172/jci97951] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is an underlying feature of many diseases, including chronic obstructive pulmonary disease, rheumatoid arthritis, asthma, and multiple sclerosis. There is an increasing appreciation of the dysregulation of adaptive immunity in chronic inflammatory and allergic diseases. The discovery of specialized pro-resolving lipid mediators (SPMs) that actively promote the resolution of inflammation has opened new avenues for the treatment of chronic inflammatory diseases. Much work has been done focusing on the impact of SPMs on innate immune cells. However, much less is known about the influence of SPMs on the development of antigen-specific adaptive immune responses. This Review highlights the important breakthroughs concerning the effects of SPMs on the key cell types involved in the development of adaptive immunity, namely dendritic cells, T cells, and B cells.
Collapse
Affiliation(s)
- Parker F Duffney
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Megan L Falsetta
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Ashley R Rackow
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Thomas H Thatcher
- Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Patricia J Sime
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
23
|
Formyl peptide receptor activation inhibits the expansion of effector T cells and synovial fibroblasts and attenuates joint injury in models of rheumatoid arthritis. Int Immunopharmacol 2018; 61:140-149. [PMID: 29879657 DOI: 10.1016/j.intimp.2018.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
The effects of formyl peptide receptors (FPRs) on effector T cells and inflammation-causing tissue-resident cells are not well known. Here, we explored the effect of FPR activation on efferent T cell responses in models of rheumatoid arthritis (RA) and on the expansion of fibroblast-like synoviocytes (FLS). Compound 43 (Cpd43; FPR1/2 agonist) was administered to mice with collagen-induced arthritis (CIA) or antigen-induced arthritis (AIA) after disease onset. Joint inflammation/damage and immunity were assessed. FLS were cultured with Cpd43 to test its effects on cell apoptosis and proliferation. To explore the effects of endogenous FPR2 ligands on FLS proliferation, FLS FPR2 was blocked or Annexin A1 (AnxA1) expression silenced. Cpd43 reduced arthritis severity in both models. In CIA, Cpd43 decreased CD4 T cell proliferation and survival and increased the production of the protective cytokine, IFNγ, in lymph nodes. In AIA, Cpd43 increased CD4 apoptosis and production of the anti-inflammatory IL-4, while augmenting the proportion of splenic regulatory T cells and their expression of IL-2Rα. In both models, Cpd43 increased CD4 IL-17A production, without affecting humoral immunity. FPR2 inhibitors reversed Cpd43-mediated effects on AIA and T cell immunity. Cpd43 decreased TNF-induced FLS proliferation and augmented FLS apoptosis in association with intracellular FPR2 accumulation, while endogenous AnxA1 and FPR2 reduced FLS proliferation via the ERK and NFκB pathways. Overall, FPR activation inhibits the expansion of arthritogenic effector CD4 T cells and FLS, and reduces joint injury in experimental arthritis. This suggests the therapeutic potential of FPR ligation for the treatment of RA.
Collapse
|
24
|
Lee HY, Jeong YS, Lee M, Kweon HS, Huh YH, Park JS, Hwang JE, Kim K, Bae YS. Intracellular formyl peptide receptor regulates naïve CD4 T cell migration. Biochem Biophys Res Commun 2018; 497:226-232. [PMID: 29427663 DOI: 10.1016/j.bbrc.2018.02.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
Abstract
We found that formyl peptide receptor (FPR) 1 and FPR3 were expressed intracellularly and/or the nucleus of naïve CD4 T cell. Activation of naïve CD4 T cells with synthetic intracellular agonists dTAT-WKYMVm and CTP-WKYMVm for FPR members stimulated CD4 T cell migration via pertussis toxin-sensitive manner. Knockdown of FPR1, but not knockdown of FPR3, blocked dTAT-WKYMVm-induced naïve CD4 T cell migration. Stimulation of naïve CD4 T cells with dTAT-WKYMVm elicited the activation of ERK, p38 MAPK, and Akt. Activation of CD4 T cells with anti-CD3 and anti-CD28 antibodies caused surface expression of FPR1 and FPR3, but not FPR2. CD4 T cells isolated from sepsis patients expressed the three members of FPR family on their cell surface. Taken together, our results suggest that intracellular FPR in naïve CD4 T cells and surface FPRs in activated CD4 T cells might regulate immune responses by regulating CD4 T cell activity.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Hee-Seok Kweon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
25
|
Chiurchiù V, Leuti A, Maccarrone M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front Immunol 2018; 9:38. [PMID: 29434586 PMCID: PMC5797284 DOI: 10.3389/fimmu.2018.00038] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids—namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids—in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| |
Collapse
|
26
|
Bergström I, Lundberg AK, Jönsson S, Särndahl E, Ernerudh J, Jonasson L. Annexin A1 in blood mononuclear cells from patients with coronary artery disease: Its association with inflammatory status and glucocorticoid sensitivity. PLoS One 2017; 12:e0174177. [PMID: 28329022 PMCID: PMC5362084 DOI: 10.1371/journal.pone.0174177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023] Open
Abstract
Annexin A1 (AnxA1) is a key player in resolution of inflammation and a mediator of glucocorticoid actions. In atherosclerotic tissue, increased expression of AnxA1 has been associated with protective plaque-stabilizing effects. Here, we investigated the expression of AnxA1 in peripheral blood mononuclear cells (PBMCs) from patients with coronary artery disease (CAD). Blood was collected from 57 patients with stable CAD (SCAD) and 41 healthy controls. We also included a minor group (n = 10) with acute coronary syndrome (ACS). AnxA1 mRNA was measured in PBMCs. Expression of AnxA1 protein (total and surface-bound) and glucocorticoid receptors (GR) were detected in PBMC subsets by flow cytometry. Also, salivary cortisol, interleukin(IL)-6 and IL-10 in plasma, and LPS-induced cytokine secretion from PBMCs, with or without dexamethasone, were assessed. AnxA1 mRNA was found to be slightly increased in PBMCs from SCAD patients compared with controls. However, protein expression of AnxA1 or GRs in PBMC subsets did not differ between SCAD patients and controls, despite SCAD patients showing a more proinflammatory cytokine profile ex vivo. Only surface expression of AnxA1 on monocytes correlated with dexamethasone-mediated suppression of cytokines. In ACS patients, a marked activation of AnxA1 was seen involving both gene expression and translocation of protein to cell surface probably reflecting a rapid glucocorticoid action modulating the acute inflammatory response in ACS. To conclude, surface expression of AnxA1 on monocytes may reflect the degree of glucocorticoid sensitivity. Speculatively, "normal" surface expression of AnxA1 indicates that anti-inflammatory capacity is impaired in SCAD patients.
Collapse
Affiliation(s)
- Ida Bergström
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna K. Lundberg
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Simon Jönsson
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Eva Särndahl
- Department of Clinical Medicine, School of Health and Medical Sciences, and iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lena Jonasson
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
27
|
Mihaylova N, Bradyanova S, Chipinski P, Herbáth M, Chausheva S, Kyurkchiev D, Prechl J, Tchorbanov AI. Annexin A1 as a target for managing murine pristane-induced systemic lupus erythematosus. Autoimmunity 2017; 50:257-268. [DOI: 10.1080/08916934.2017.1300884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nikolina Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Silviya Bradyanova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petroslav Chipinski
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Melinda Herbáth
- MTA-ELTE Immunology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Stela Chausheva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, University Hospital ‘St.I.Rilski’, Medical University Sofia, Sofia, Bulgaria
| | - József Prechl
- MTA-ELTE Immunology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrey I. Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
28
|
Tu Y, Johnstone CN, Stewart AG. Annexin A1 influences in breast cancer: Controversies on contributions to tumour, host and immunoediting processes. Pharmacol Res 2017; 119:278-288. [PMID: 28212890 DOI: 10.1016/j.phrs.2017.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/20/2022]
Abstract
Annexin A1 is a multifunctional protein characterised by its actions in modulating the innate and adaptive immune response. Accumulating evidence of altered annexin A1 expression in many human tumours raises interest in its functional role in cancer biology. In breast cancer, altered annexin A1 expression levels suggest a potential influence on tumorigenic and metastatic processes. However, reports of conflicting results reveal a relationship that is much more complex than first conceptualised. In this review, we explore the diverse actions of annexin A1 on breast tumour cells and various host cell types, including stromal immune and structural cells, particularly in the context of cancer immunoediting.
Collapse
Affiliation(s)
- Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Melbourne, Australia
| | - Cameron N Johnstone
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
29
|
Sakaue T, Shikata F, Utsunomiya K, Fukae S, Kurata M, Nakaoka H, Okazaki M, Kawanishi Y, Kojima A, Higashiyama S, Izutani H. Proteomics-based analysis of lung injury-induced proteins in a mouse model of common bile duct ligation. Surgery 2017; 161:1525-1535. [PMID: 28143660 DOI: 10.1016/j.surg.2016.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung injury is a life-threatening complication in patients with liver dysfunction. We recently provided an experimental lung injury model in mouse with common bile duct ligation. In this study, we aimed to characterize the pathologic and biochemical features of lung tissues in common bile duct ligation mice using a proteomic approach. METHODS Common bile ducts of BALB/c mice, 8 weeks of age, were ligated operatively. CD31-expressing pulmonary cells were sorted with immunomagnetic microbeads, and protein profiles were examined by 2-dimensional gel electrophoresis. Based on the results of protein identification, immunohistochemistry and quantitative reverse transcription polymerase chain reaction were carried out in pulmonary and hepatic tissues. RESULTS Two-dimensional gel electrophoresis revealed 3 major inflammation-associated proteins exhibiting considerable increases in the number of CD31-positive pulmonary cells after common bile duct ligation. Mass spectrometry analysis identified these proteins as SerpinB1a (48 kDa), ANXA1 (46 kDa), and S100A9 (16 kDa). Furthermore, the 3 proteins were more highly expressed in dilated pulmonary blood vessels of common bile duct ligation mice, in which neutrophils and monocytes were prominent, as shown by immunohistochemistry. More importantly, SerpinB1a mRNA and protein were significantly upregulated in the liver, whereas S100A9 and ANXA1 mRNA and protein were upregulated in the lungs, as shown by quantitative reverse transcription polymerase chain reaction and Western blotting. CONCLUSION We identified 3 proteins that were highly expressed in the lung after common bile duct ligation using a proteomics-based approach.
Collapse
Affiliation(s)
- Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan; Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
| | - Fumiaki Shikata
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan; Department of Cardiothoracic Surgery, St Vincent's Hospital Sydney, NSW, Australia
| | - Kaho Utsunomiya
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shunya Fukae
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Division of Analytical Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan; Department of Pathology, Proteo-Science Center (PROS), Toon, Ehime, Japan
| | - Hirotomo Nakaoka
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mikio Okazaki
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yujiro Kawanishi
- Department of Cardiothoracic Surgery, St Vincent's Hospital Sydney, NSW, Australia
| | - Ai Kojima
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hironori Izutani
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
| |
Collapse
|
30
|
Nagaya T, Kawata K, Kamekura R, Jitsukawa S, Kubo T, Kamei M, Ogasawara N, Takano KI, Himi T, Ichimiya S. Lipid mediators foster the differentiation of T follicular helper cells. Immunol Lett 2016; 181:51-57. [PMID: 27838468 DOI: 10.1016/j.imlet.2016.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 10/23/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022]
Abstract
Lipid mediators such as leukotrienes and lipoxines broadly regulate innate and acquired immunity, and their dysfunction causes various immune-mediated disorders. We previously reported a salient feature of arachidonate 5-lipoxyganase (Alox5), which is responsible for the production of such lipid mediators, in the regulation of high affinity antibodies in vivo. The aim of this study was to determine the functional significance of Alox5-related lipid mediators during the processes of acquired humoral responses. The results of in vitro experiments using lymphocytes in tonsils and blood specimens showed that lipoxin A4 (LXA4) and leukotriene B4 (LTB4) have the capacity to differentiate naïve CD4+ T cells into T follicular helper (Tfh) cells, which activate naïve B cells to form germinal centers. Such a function of LXA4 was further supported by results of in vitro studies using BML-111 and BOC-2, which are an agonist and an antagonist, respectively, of FPR2 of an LXA4-specific cell-surface receptor. The results suggest that such lipid mediators have a potential role in the development of lymphoid follicles through the regulation of Tfh cell differentiation.
Collapse
Affiliation(s)
- Tomonori Nagaya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Sumito Jitsukawa
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Motonari Kamei
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| |
Collapse
|
31
|
Cheng Q, Wang Z, Ma R, Chen Y, Yan Y, Miao S, Jiao J, Cheng X, Kong L, Ye D. Lipoxin A4 protects against lipopolysaccharide-induced sepsis by promoting innate response activator B cells generation. Int Immunopharmacol 2016; 39:229-235. [PMID: 27494686 DOI: 10.1016/j.intimp.2016.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Sepsis is a serious disease that leads to severe inflammation, dysregulation of immune system, multi-organ failure and death. Innate response activator (IRA) B cells, which produce granulocyte-macrophage colony-stimulating factor (GM-CSF), protect against microbial sepsis. Lipid mediator lipoxin A4 (LXA4) exerts anti-inflammatory and immunoregulatory effects, and it has been reported that LXA4 receptor ALX/FPR2 is expressed on B cells. Here, we investigated the potential role of LXA4 on IRA B cells in lipopolysaccharide (LPS)-induced sepsis. We found that LXA4 significantly promoted the expansion of splenic IRA B cells and increased GM-CSF expression in splenic B cells with LPS stimulation. After splenectomy, LXA4 treatment did not change the serum or peritoneal IL-1β, IL-6 and TNF-α levels in LPS-induced sepsis. LXA4 accelerated the migration of peritoneal B cells to spleen for their differentiation into IRA B cells, whereas this effect was independent of peritoneal macrophage. Furthermore, LXA4 enhanced the phosphorylation level of signal transducer and activator of transcription 5 (STAT5) in splenic B cells. These results suggest that LXA4 protects against LPS-induced sepsis by promoting the generation and migration of splenic IRA B cells, and the underlying molecular mechanism may be related to STAT5 activation. It might provide new insights and therapeutic approaches for treating sepsis.
Collapse
Affiliation(s)
- Qiong Cheng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zheng Wang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruihua Ma
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongtao Chen
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuo Miao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyu Jiao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue Cheng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Duyun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
32
|
MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ-independent fashion and during development. Sci Rep 2016; 6:24251. [PMID: 27080443 PMCID: PMC4832187 DOI: 10.1038/srep24251] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/14/2016] [Indexed: 12/24/2022] Open
Abstract
Expression of major histocompatibility antigens class-2 (MHC-II) under non-inflammatory conditions is not usually associated with the nervous system. Comparative analysis of immunogenicity of human embryonic/fetal brain-derived neural stem cells (hNSCs) and human mesenchymal stem cells with neurogenic potential from umbilical cord (UC-MSCs) and paediatric adipose tissue (ADSCs), while highlighting differences in their immunogenicity, led us to discover subsets of neural cells co-expressing the neural marker SOX2 and MHC-II antigen in vivo during human CNS development. MHC-II proteins in hNSCs are functional, and differently regulated upon differentiation along different lineages. Mimicking an inflammatory response using the inflammatory cytokine IFNγ induced MHC-II up-regulation in both astrocytes and hNSCs, but not in UC-MSCs and ADSCs, either undifferentiated or differentiated, though IFNγ receptor expression was comparable. Together, hypoimmunogenicity of both UC-MSCs and ADSCs supports their suitability for allogeneic therapy, while significant immunogenicity of hNSCs and their progeny may at least in part underlie negative effects reported in some patients following embryonic neural cell grafts. Crucially, we show for the first time that MHC-II expression in developing human brains is not restricted to microglia as previously suggested, but is present in discrete subsets of neural progenitors and appears to be regulated independently of inflammatory stimuli.
Collapse
|
33
|
Senthilkumaran C, Hewson J, Ollivett TL, Bienzle D, Lillie BN, Clark M, Caswell JL. Localization of annexins A1 and A2 in the respiratory tract of healthy calves and those experimentally infected with Mannheimia haemolytica. Vet Res 2015; 46:6. [PMID: 25827591 PMCID: PMC4327810 DOI: 10.1186/s13567-014-0134-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022] Open
Abstract
Annexins A1 and A2 are proteins known to function in the stress response, dampening inflammatory responses and mediating fibrinolysis. We found, in healthy cattle recently arrived to a feedlot, that lower levels of these proteins correlated with later development of pneumonia. Here we determine the localization of annexin A1 and A2 proteins in the respiratory tract and in leukocytes, in healthy calves and those with Mannheimia haemolytica pneumonia. In healthy calves, immunohistochemistry revealed cytoplasmic expression of annexin A1 in the surface epithelium of large airways, tracheobronchial glands and goblet cells, to a lesser degree in small airways, but not in alveolar epithelium. Immunocytochemistry labeled annexin A1 in the cytoplasm of neutrophils from blood and bronchoalveolar lavage fluid, while minimal surface expression was detected by flow cytometry in monocytes, macrophages and lymphocytes. Annexin A2 expression was detected in surface epithelium of small airways, some mucosal lymphocytes, and endothelium, with weak expression in large airways, tracheobronchial glands and alveolar septa. For both proteins, the level of expression was similar in tissues collected five days after intrabronchial challenge with M. haemolytica compared to that from sham-inoculated calves. Annexins A1 and A2 were both detected in leukocytes around foci of coagulative necrosis, and in necrotic cells in the center of these foci, as well as in areas outlined above. Thus, annexins A1 and A2 are proteins produced by airway epithelial cells that may prevent inflammation in the healthy lung and be relevant to development of pneumonia in stressed cattle.
Collapse
|
34
|
Formyl peptide receptor as a novel therapeutic target for anxiety-related disorders. PLoS One 2014; 9:e114626. [PMID: 25517119 PMCID: PMC4269406 DOI: 10.1371/journal.pone.0114626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/11/2014] [Indexed: 01/09/2023] Open
Abstract
Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3-/- mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface.
Collapse
|
35
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
36
|
de Jong AJ, Kloppenburg M, Toes REM, Ioan-Facsinay A. Fatty acids, lipid mediators, and T-cell function. Front Immunol 2014; 5:483. [PMID: 25352844 PMCID: PMC4195378 DOI: 10.3389/fimmu.2014.00483] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/22/2014] [Indexed: 12/19/2022] Open
Abstract
Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research.
Collapse
Affiliation(s)
- Anja J de Jong
- Department of Rheumatology, Leiden University Medical Centre , Leiden , Netherlands
| | - Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Centre , Leiden , Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Centre , Leiden , Netherlands
| | | |
Collapse
|
37
|
Wan M, van der Does AM, Tang X, Lindbom L, Agerberth B, Haeggström JZ. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol 2014; 95:971-81. [PMID: 24550523 DOI: 10.1189/jlb.0513304] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
LL-37/hCAP-18 is the only human member of the cathelicidin family and plays an important role in killing various pathogens, as well as in immune modulation. In this study, we investigated the effect of LL-37 on bacterial phagocytosis by macrophages and demonstrate that LL-37 enhances phagocytosis of IgG-opsonized Gram-negative and Gram-positive bacteria in a dose- and time-dependent manner by dTHP-1 cells. In addition, LL-37 enhanced phagocytosis of nonopsonized Escherichia coli by human macrophages. Consistently, LL-37 elevated the expression of FcγRs on macrophages but not the complement receptors CD11b and -c. Further studies revealed that the expression of TLR4 and CD14 is also increased on LL-37-treated macrophages. Several lines of evidence indicated that the FPR2/ALX receptor mediated LL-37-induced phagocytosis. However, TLR4 signaling was also coupled to the phagocytic response, as a specific TLR4 antibody significantly suppressed phagocytosis of IgG-opsonized E. coli and nonopsonized E. coli by dTHP-1 cells. Finally, macrophages from Cnlp(-/-) mice exhibited diminished bacterial phagocytosis compared with macrophages from their WT littermates. In conclusion, we demonstrate a novel, immune-modulatory mechanism of LL-37, which may contribute to bacterial clearance.
Collapse
Affiliation(s)
- Min Wan
- Departments of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, and
| | | | - Xiao Tang
- Departments of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, and
| | - Lennart Lindbom
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Departments of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, and
| | - Jesper Z Haeggström
- Departments of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, and
| |
Collapse
|
38
|
Borges QI, Fontes CJF, Damazo AS. Analysis of lymphocytes in patients with Plasmodium vivax malaria and its relation to the annexin-A1 and IL-10. Malar J 2013; 12:455. [PMID: 24359168 PMCID: PMC3878186 DOI: 10.1186/1475-2875-12-455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is the most prevalent parasitic disease in the world. In Brazil, the largest number of malaria cases (98%) is within the Legal Amazon region, where Plasmodium vivax is responsible for over 80% of diagnosed cases. The aim of this study was to investigate the annexin-A1 expression in CD4+, CD8+ T cells, regulatory T cells (Treg) and cytokine IL-10 quantification in plasma from patients with malaria caused by P. vivax. METHODS The quantification of the cytokine IL-10 of patients infected with P. vivax and healthy controls were evaluated by enzyme-linked immunosorbent assay (ELISA). The determination of the expression of annexin-A1 in lymphocytes from patients and healthy controls was determined by immunofluorescence staining. All results were correlated with the parasitaemia and the number of previous episodes of malaria. RESULTS The cytokine IL-10 plasma levels showed a significant increase in both patients with low (650.4 ± 59.3 pg/mL) and high (2870 ± 185.3 pg/mL) parasitaemia compared to the control (326.1 ± 40.1 pg/mL). In addition, there was an increase of this cytokine in an episode dependent manner (individuals with no previous episodes of malaria--primoinfected: 363.9 ± 31.1 pg/mL; individuals with prior exposure: 659.9 ± 49.4 pg/mL). The quantification of annexin-A1 expression indicated a decrease in CD4+ and CD8+ T cells and an increase in Treg in comparison with the control group. When annexin-A1 expression was compared according to the number of previous episodes of malaria, patients who have been exposed more than once to the parasite was found to have higher levels of CD4+ T cells (96.0 ± 2.5 A.U) compared to primoinfected (50.3 ± 1.7). However, this endogenous protein had higher levels in CD8+ (108.5 ± 3.1) and Treg (87.5 ± 2.5) from patients primoinfected. CONCLUSION This study demonstrates that in the patients infected with P. vivax the release of immunoregulatory molecules can be influenced by the parasitaemia level and the number of previous episodes of malaria. annexin-A1 is expressed differently in lymphocyte sub-populations and may have a role in cell proliferation. Furthermore, annexin-A1 may be contributing to IL-10 release in plasma of patients with vivax malaria.
Collapse
Affiliation(s)
| | | | - Amílcar S Damazo
- Post-graduation in Health Science, Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil.
| |
Collapse
|
39
|
Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins Other Lipid Mediat 2013; 107:64-76. [DOI: 10.1016/j.prostaglandins.2013.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
|
40
|
Yang YH, Morand E, Leech M. Annexin A1: potential for glucocorticoid sparing in RA. Nat Rev Rheumatol 2013; 9:595-603. [PMID: 23958797 DOI: 10.1038/nrrheum.2013.126] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids have broad-ranging and powerful anti-inflammatory and immunomodulatory effects. Unsurprisingly, therefore, glucocorticoids are widely and persistently used to treat a large number of inflammatory diseases, including rheumatoid arthritis (RA), despite the well-described adverse effects of these drugs. Annexin A1 is a glucocorticoid-induced molecule that is known to replicate many of the described anti-inflammatory effects of glucocorticoids. In addition to the well-documented roles of this protein in neutrophil function, emerging evidence suggests that annexin A1 is involved in the modulation of T-cell function and the adaptive immune responses relevant to RA. Interest in annexin A1 was renewed after the delineation of the receptors for this protein. This breakthrough also led to advances in our understanding of anti-inflammatory annexin A1 mimetic peptides and agonistic compounds targeting these receptors, particularly those specific for the receptor N-formyl peptide receptor 2 (FPR2). Herein, we review the current knowledge of the biological activities of annexin A1 and their relevance to RA pathogenesis. We also discuss the potential of annexin A1 mimics and strategies aimed at potentiating annexin A1 signalling to become viable approaches to minimizing glucocorticoid use in RA and other inflammatory disorders.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Clayton, VIC 3168, Australia
| | | | | |
Collapse
|
41
|
Annexin-A1 protein and its relationship to cortisol in human saliva. Psychoneuroendocrinology 2013; 38:722-7. [PMID: 23017499 DOI: 10.1016/j.psyneuen.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 12/23/2022]
Abstract
Salivary cortisol is commonly used as a clinical biomarker of endocrine status and also as a marker of psychosocial stress. Annexin-A1 (AnxA1) is an anti-inflammatory protein whose expression is modulated by glucocorticoids. Our principal objectives were to (i) detect the presence of and (ii) measure AnxA1 protein in whole human saliva and to (iii) investigate whether salivary cortisol and AnxA1 are correlated in healthy humans. A total of 37 healthy participants (male and female) were used in the study. Saliva was collected using salivette tubes. Salivary cortisol and AnxA1 protein were sampled at between 3 and 6 time points over 24h and measured for cortisol and AnxA1 protein using specific ELISA's. The presence of salivary AnxA1 protein was confirmed by Western blotting. AnxA1 protein is detectable in whole human saliva, as detected by Western blot analysis and ELISA. A diurnal rhythm was evident in both salivary cortisol (P<0.01) and AnxA1 (P<0.01) and was defined as a significant difference in time 0 (waking) samples compared to 'bed' (2300 h) samples. AnxA1 protein did not exhibit an awakening response (P>0.05), whereas salivary cortisol was significantly elevated between time 0 and 30 min post waking (P<0.001). AnxA1 protein correlates positively with salivary cortisol, indicating that cortisol is most likely a regulator of AnxA1 in human saliva.
Collapse
|
42
|
D'Acquisto F, Piras G, Rattazzi L. Pro-inflammatory and pathogenic properties of Annexin-A1: the whole is greater than the sum of its parts. Biochem Pharmacol 2013; 85:1213-8. [PMID: 23435354 DOI: 10.1016/j.bcp.2013.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 01/01/2023]
Abstract
According to Aristotle, "The whole is greater than the sum of its parts" and yet, although a long time has passed still, we seem to struggle to accept this universal concept. Searching in the literature for the biological function of Annexin-A1, one would find a wealth of information on its homeostatic and protective anti-inflammatory effects. However, very little has been said on its emerging role in a wide variety of pathological conditions ranging from cancer to autoimmunity. In this commentary, we will focus our attention on this novel pro-inflammatory and pathogenic "dark side" of Annexin-A1. We will summarize our current understanding of the signaling pathways regulated by this protein and link it to clinical and experimental evidences. Finally we will discuss assets and limitations of Annexin-A1 therapeutic strategies. Most importantly, we hope that this commentary will provide scientific support to "controversial" findings one might encounter while studying this fascinating protein.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | | |
Collapse
|
43
|
Yang YH, Song W, Deane JA, Kao W, Ooi JD, Ngo D, Kitching AR, Morand EF, Hickey MJ. Deficiency of annexin A1 in CD4+ T cells exacerbates T cell-dependent inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 190:997-1007. [PMID: 23267026 DOI: 10.4049/jimmunol.1202236] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Annexin A1 (AnxA1) is recognized as an endogenous anti-inflammatory molecule. However, its effects on the adaptive immune response and, in particular, on T cells remain unclear. In this study, we investigated the actions of AnxA1 in three distinct models of T cell-mediated inflammation. In contact hypersensitivity, collagen-induced arthritis, and inflammation induced by OT-II TCR transgenic T cells responding to OVA, AnxA1 deficiency significantly increased Ag-induced T cell proliferation and the resultant level of inflammation. In the contact hypersensitivity model, this was associated with increased adhesion of CD4(+) T cells, CD8(+) T cells, and neutrophils in the dermal microvasculature, as well as increased T cell expression of RORγt and IL-17A. In collagen-induced arthritis, deficiency of endogenous AnxA1 increased susceptibility to arthritis and Ag-specific T cell activation. Deficiency of AnxA1 also increased OVA-induced cutaneous delayed-type hypersensitivity and IFN-γ and IL-17 release. Transfer experiments using CD4(+) T cells from AnxA1(-/-) mice demonstrated that the absence of AnxA1 solely in T cells resulted in increased inflammatory responses in wild-type recipients. Similarly, experiments using AnxA1(-/-) OT-II CD4(+) T cells demonstrated that the absence of AnxA1 in T cells was sufficient to induce increased Ag-specific CD4(+) T cell proliferation in vivo, augment T cell production of IFN-γ, IL-17, TNF, and IL-6, and increase Akt, ERK, and p38 activation. Together, these findings indicate that T cell-expressed AnxA1 functions to attenuate T cell-driven inflammatory responses via T cell-intrinsic effects on intracellular signaling, proliferation, and Th1/Th17 cytokine release.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gavins FNE, Hickey MJ. Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol 2012; 3:354. [PMID: 23230437 PMCID: PMC3515881 DOI: 10.3389/fimmu.2012.00354] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022] Open
Abstract
Inflammation is the body’s way of defending itself against noxious stimuli and pathogens. Under normal circumstances, the body is able to eliminate the insult and subsequently promote the resolution of inflammation and the repair of damaged tissues. The concept of homeostasis is one that not only requires a fine balance between both pro-inflammatory mediators and pro-resolving/anti-inflammatory mediators, but also that this balance occurs in a time and space-specific manner. This review examines annexin A1, an anti-inflammatory protein that, when used as an exogenous therapeutic, has been shown to be very effective in limiting inflammation in a diverse range of experimental models, including myocardial ischemia/reperfusion injury, arthritis, stroke, multiple sclerosis, and sepsis. Notably, this glucocorticoid-inducible protein, along with another anti-inflammatory mediator, lipoxin A4, is starting to help explain and shape our understanding of the resolution phase of inflammation. In so doing, these molecules are carving the way for innovative drug discovery, based on the stimulation of endogenous pro-resolving pathways.
Collapse
Affiliation(s)
- Felicity N E Gavins
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London London, UK
| | | |
Collapse
|
45
|
Effect of Cardiopulmonary Bypass on Annexin A1 Expression in Peripheral Blood Mononuclear Cells of Children with Congenital Heart Disease. J Med Biochem 2012. [DOI: 10.2478/v10011-011-0054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effect of Cardiopulmonary Bypass on Annexin A1 Expression in Peripheral Blood Mononuclear Cells of Children with Congenital Heart DiseaseThis study aimed to investigate the effect of cardiopulmonary bypass (CPB) on Annexin A1 expression in the peripheral blood mononuclear cells (PBMCs) of children with congenital heart disease (CHD). A total of 30 children receiving CPB for interventricular septal defect were included. Peripheral blood was collected before and after CPB. PBMCs were collected by density gradient centrifugation. Protein extraction was performed by lysis and subjected to 2D-QUANT for protein quantitation. Isoelectric focusing electrophoresis (IEF) was carried out followed by gel image analysis. Protein spots with a difference in expression of >1.5 fold were collected as candidate proteins which were subjected to mass spectrometry for the identification of differentially expressed proteins. Western blot assay was employed to confirm the expressions of target proteins. Peripheral blood collected at two time points was subjected to two-dimensional electrophoresis, and a total of 12 differentially expressed proteins were identified. Of them, 5 proteins had decreased expression before CPB (T0) but their expressions increased after CPB (T1); the remaining 7 proteins had increased expressions before CPB but their expressions reduced after CPB. One of these differentially expressed proteins was Annexin A1. Western blot assay confirmed that Annexin A1 expression began to increase at 0.5 h after CPB, and the increase of Annexin A1 was more obvious after CPB. Our findings primarily indicate the potential mechanism underlying the role of PBMC in inflammatory response following CPB, and provide a target for the prevention and control of post-CPB systemic inflammatory response syndrome (SIRS).
Collapse
|
46
|
Pei L, Zhang J, Zhao F, Su T, Wei H, Tian J, Li M, Shi J. Annexin 1 exerts anti-nociceptive effects after peripheral inflammatory pain through formyl-peptide-receptor-like 1 in rat dorsal root ganglion. Br J Anaesth 2011; 107:948-58. [PMID: 21990306 DOI: 10.1093/bja/aer299] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Annexin 1 (ANXA1) has analgesic effects in inflammatory pain. We aimed to investigate the anti-nociceptive role of ANXA1, at the dorsal root ganglion (DRG) level, through an interaction with formyl-peptide-receptor-like 1 (FPR2/ALX). METHODS Inflammatory pain was evoked by injecting complete Freund's adjuvant (CFA, 50 μl) into the hindpaw of male Sprague-Dawley rats. The distribution of ANXA1 and FPR2/ALX in L4/5 DRGs was evaluated by immunofluorescence. The expression of ANXA1 was measured by western blot. The involvement of FPR2/ALX in the anti-nociception of ANXA1 was investigated by thermal (irradiant heat) and mechanical (von Frey filament) pain tests with intrathecal (i.t.) ANXA1-derived peptide (Anxa1(2-26)), FPR2/ALX agonist 5(S)-6(R)-7-trihydroxyheptanoic-acid-methyl-ester (BML-111), and antagonist N-t-Boc-Phe-Leu-Phe-Leu-Phe (Boc1). RESULTS ANXA1 and FPR2/ALX localized in the satellite glial cells and neurones in L4/5 DRGs. CFA treatment (n=20) increased ANXA1 expression in L4/5 DRGs within 7 days (P<0.01). I.T. Anxa1(2-26) (20 and 100 µg µl(-1)) and BML-111 (10 and 100 nmol) reduced CFA-induced thermal and mechanical nociception within 48 h (n=40) (P<0.05). However, i.t. Boc1 10 µg intensified inflammatory pain (P<0.05) and reversed the anti-nociceptive effect of Anxa1(2-26) (n=25) (P<0.05). Moreover, ANXA1 expression increased in L4/5 DRGs after i.t. Anxa1(2-26) (20 µg µl(-1)) (P<0.05) and BML-111 (10 nmol) (P<0.01) but decreased after i.t. Boc1 (10 and 100 µg) alone (P<0.01) or Boc1 (10 µg) co-injection with Anxa1(2-26) (20 µg µl(-1)) (P<0.05). CONCLUSIONS Endogenous ANXA1 expression at the DRG level is involved in CFA-induced inflammatory pain, and i.t. ANXA1 20 µg µl(-1) produces its anti-nociceptive effect through FPR2/ALX.
Collapse
Affiliation(s)
- L Pei
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | | | |
Collapse
|