1
|
Bitting RL, Tooze JA, Goodman M, Vile DC, Brown JM, Thomas CY, Neve M, Kooshki M, Addo S, Triozzi PL, Dubey P. Low-dose Paclitaxel with Pembrolizumab Enhances Clinical and Immunologic Responses in Platinum-refractory Urothelial Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:530-539. [PMID: 38345536 PMCID: PMC10896069 DOI: 10.1158/2767-9764.crc-23-0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/09/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Single-agent checkpoint inhibition is effective in a minority of patients with platinum-refractory urothelial carcinoma; therefore, the efficacy of combining low-dose paclitaxel with pembrolizumab was tested. MATERIALS AND METHODS This was a prospective, single-arm phase II trial with key inclusion criteria of imaging progression within 12 months of platinum therapy and Eastern Cooperative Oncology Group ≤1. Treatment was pembrolizumab 200 mg day 1 and paclitaxel 80 mg/m2 days 1 and 8 of a 21-day cycle for up to eight cycles unless progression or unacceptable adverse events (AE). The primary endpoint was overall response rate (ORR) with overall survival (OS), 6-month progression-free survival (PFS), and safety as key secondary endpoints. Change in circulating immune cell populations, plasma, and urinary miRs were evaluated. RESULTS Twenty-seven patients were treated between April 2016 and June 2020, with median follow-up of 12.4 months. Baseline median age was 68 years, with 81% men and 78% non-Hispanic White. ORR was 33% by intention to treat and 36% in imaging-evaluable patients with three complete responses. Six-month PFS rate was 48.1% [95% confidence interval (CI): 28.7-65.2] and median OS 12.4 months (95% CI: 8.7 months to not reached). Common ≥ grade 2 possibly-related AEs were anemia, lymphopenia, hyperglycemia, and fatigue; grade 3/4 AEs occurred in 56%, including two immune-mediated AEs (pneumonitis and nephritis). Responding patients had a higher percentage of circulating CD4+IFNγ+ T cells. Levels of some miRs, including plasma miR 181 and miR 223, varied in responders compared with nonresponders. CONCLUSIONS The addition of low-dose paclitaxel to pembrolizumab is active and safe in platinum-refractory urothelial carcinoma. SIGNIFICANCE We found that combining pembrolizumab with low-dose paclitaxel may be effective in patients with urothelial carcinoma progressing on platinum chemotherapy, with favorable safety profiles.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Janet A Tooze
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael Goodman
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Donald C Vile
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jessica M Brown
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| | - Christopher Y Thomas
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Morgan Neve
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mitra Kooshki
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Safoa Addo
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Pierre L Triozzi
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
- Pelotonia Institute of Immunooncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Jiang X, Shi R, Ma R, Tang X, Gong Y, Yu Z, Shi Y. The role of microRNA in psoriasis: A review. Exp Dermatol 2023; 32:1598-1612. [PMID: 37382420 DOI: 10.1111/exd.14871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rongcan Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Mi QS, Wang J, Liu Q, Wu X, Zhou L. microRNA dynamic expression regulates invariant NKT cells. Cell Mol Life Sci 2021; 78:6003-6015. [PMID: 34236444 PMCID: PMC11073247 DOI: 10.1007/s00018-021-03895-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Invariant natural killer T cells (iNKT) are a prevalent population of innate-like T cells in mice, but quite rare in humans that are critical for regulation of the innate and adaptive immune responses during antimicrobial immunity, tumor rejection, and inflammatory diseases. Multiple transcription factors and signaling molecules that contribute to iNKT cell selection and functional differentiation have been identified. However, the full molecular network responsible for regulating and maintaining iNKT populations remains unclear. MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that regulate gene expression post-transcriptionally. Previous reports uncovered the important roles of miRNAs in iNKT cell development and function using Dicer mutant mice. In this review, we discuss the emerging roles of individual miRNAs in iNKT cells reported by our group and other groups, including miR-150, miR-155, miR-181, let-7, miR-17 ~ 92 cluster, and miR-183-96-182 cluster. It is likely that iNKT cell development, differentiation, homeostasis, and functions are orchestrated through a multilayered network comprising interactions among master transcription factors, signaling molecules, and dynamically expressed miRNAs. We provide a comprehensive view of the molecular mechanisms underlying iNKT cell differentiation and function controlled by dynamically expressed miRNAs.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Queping Liu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
Shissler SC, Webb TJ. The ins and outs of type I iNKT cell development. Mol Immunol 2018; 105:116-130. [PMID: 30502719 DOI: 10.1016/j.molimm.2018.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/14/2018] [Accepted: 09/29/2018] [Indexed: 01/07/2023]
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that bridge the gap between the innate and adaptive immune responses. Like innate immune cells, they have a mature, effector phenotype that allows them to rapidly respond to threats, compared to adaptive cells. NKT cells express T cell receptors (TCRs) like conventional T cells, but instead of responding to peptide antigen presented by MHC class I or II, NKT cell TCRs recognize glycolipid antigen in the context of CD1d. NKT cells are subdivided into classes based on their TCR and antigen reactivity. This review will focus on type I iNKT cells that express a semi invariant Vα14Jα18 TCR and respond to the canonical glycolipid antigen, α-galactosylceramide. The innate-like effector functions of these cells combined with their T cell identity make their developmental path quite unique. In addition to the extrinsic factors that affect iNKT cell development such as lipid:CD1d complexes, co-stimulation, and cytokines, this review will provide a comprehensive delineation of the cell intrinsic factors that impact iNKT cell development, differentiation, and effector functions - including TCR rearrangement, survival and metabolism signaling, transcription factor expression, and gene regulation.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA.
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Lin B, Jia X, Xie Z, Su T, Wei Y, Tang J, Yang C, Cui C, Liu J. Vascular Endothelial Cells Activate Peripheral Natural Killer T Cells and Participate in Regulation of Downstream Immune Cascades in Patients with Sepsis. Med Sci Monit 2018; 24:7387-7398. [PMID: 30324936 PMCID: PMC6199819 DOI: 10.12659/msm.911466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study investigated the effect of supernatant of endothelial cells stimulated by peripheral blood serum from sepsis patients on phenotype and function of peripheral NKT cells. Material/Methods Twenty-one patients with sepsis and 21 healthy subjects were included. Peripheral blood (5 ml) was collected from all patients and healthy subjects. To isolate peripheral blood mononuclear cells (PBMCs), Ficoll lymphocyte separation solution was used. Flow cytometry was carried out to determine NKT cell ratio, activity, and cytokine secretion. Human umbilical vein endothelial cells were cultured with serum from sepsis patients for 48 h before changing to fresh medium, and supernatant was collected. The supernatant was used to co-culture PBMCs before analyzing NKT activity and cytokines. Results The ratios of CD3-CD56+NK cells and CD3+CD56+NKT cells were increased in peripheral blood from sepsis patients. Surface receptors p30, G2D, and p44 of CD3+CD56+NKT cells were elevated, while inhibitory receptors NKG2A and 158b were decreased. CD4+ NKT cells in peripheral blood from sepsis patients were enhanced. GranB, IFN-γ, IL-4, and IL-17 in NKT cells from sepsis patients were up-regulated. After co-culture with vascular endothelial cells treated with sepsis serum, expression of p30 and G2D in NKT cells was upregulated, and number of TCRVα24-positive cells was increased. In addition, ratio of CD4+NKT cells was increased, and intracellular expression of IL-4 and IFN-γ was elevated. Conclusions The study demonstrates that the level of NKT cells in peripheral blood from sepsis patients is increased, and their activity is enhanced. In addition, vascular endothelial cells from sepsis patients can regulate the activity of NKT cells.
Collapse
Affiliation(s)
- Bing Lin
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xinju Jia
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zuohua Xie
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ting Su
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ying Wei
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jiping Tang
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chengzhi Yang
- Graduate School, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chuanbao Cui
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jinxiang Liu
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
6
|
Liu Q, Wu DH, Han L, Deng JW, Zhou L, He R, Lu CJ, Mi QS. Roles of microRNAs in psoriasis: Immunological functions and potential biomarkers. Exp Dermatol 2017; 26:359-367. [PMID: 27783430 PMCID: PMC5837862 DOI: 10.1111/exd.13249] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules, which function in RNA silencing and post-transcriptional regulation of gene expression. Psoriasis is an inflammatory skin disease characterized by the dysfunction of keratinocytes, with the immune dysregulation. We reviewed the recent studies on the roles of miRNAs in psoriasis and showed that miRNAs play key roles in psoriasis, including the regulation of hyperproliferation, cytokine and chemokine production in keratinocyte, as well as mediating immune dysfunction in psoriasis. Furthermore, miRNAs, particularly, circulating miRNAs may serve as novel biomarkers for diagnosis, monitoring therapy response and reflecting the disease severity. Thus, targeting specific miRNAs may be used to develop new therapeutic methods for psoriasis.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Immunology, School of medicine, Fudan University, Shanghai, China
| | - Ding-Hong Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Ling Han
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Jing-Wen Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Rui He
- Department of Immunology, School of medicine, Fudan University, Shanghai, China
| | - Chuan-Jian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
7
|
|
8
|
Achberger S, Aldrich W, Tubbs R, Crabb JW, Singh AD, Triozzi PL. Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol Immunol 2013; 58:182-6. [PMID: 24370793 DOI: 10.1016/j.molimm.2013.11.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND The immune response has been implicated in the control of uveal melanoma progression. Epigenetic mechanisms mediated by specific microRNAs (miRs) regulate immune responses. METHODS Blood was drawn from six patients with uveal melanoma followed from diagnosis, at which time there was no clinical or radiographic evidence of metastasis, until metastasis manifested. Circulating T cell, natural killer (NK), natural killer T (NKT), and myeloid suppressor cell populations were assessed by flow cytometry. CD3(+), CD15(+), and CD56(+) cells were isolated using immunomagnetic beads. Plasma and cellular levels of immune regulatory miRs were determined by quantitative polymerase chain reaction assays. RESULTS The development of metastasis was associated with decreases in circulating CD3(-)CD56(dim) NK cells and CD8(+) and double-negative CD3(+)CD56(+) NKT cells. ICOS(+)CD4(+)FoxP3(+) T regulatory cells and CD11b(+)CD14(-)CD15(+) myeloid suppressor cells increased. Plasma levels of miR-20a, 125b, 146a, 155, 181a, and 223 were higher in the study patients at diagnosis compared to controls. Plasma levels of miR-20a, 125b, 146a, 155, and 223 increased, and miR-181a decreased when metastasis manifested. Alterations in immune regulatory miRs were also observed in CD3(+), CD15(+), and CD56(+) cell populations. CONCLUSIONS The development of metastasis in uveal melanoma is associated with changes in immune effector and regulatory cells consistent with lessening tumor immune surveillance. These changes are associated with changes in plasma and cellular levels of immune regulatory miRs. The results may help guide uveal melanoma immunotherapy and biomarker development.
Collapse
Affiliation(s)
- Susan Achberger
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Wayne Aldrich
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Raymond Tubbs
- Department of Molecular Pathology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - John W Crabb
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Arun D Singh
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Pierre L Triozzi
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
9
|
Zhou L, Park JJ, Zheng Q, Dong Z, Mi Q. MicroRNAs are key regulators controlling iNKT and regulatory T-cell development and function. Cell Mol Immunol 2011; 8:380-7. [PMID: 21822298 PMCID: PMC4012887 DOI: 10.1038/cmi.2011.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/24/2011] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that post-transcriptionally regulate expression of their target genes. Emerging evidence indicates that miRNAs are important regulators that control the development, differentiation and function of different immune cells. Both CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells and invariant natural killer T (iNKT) cells are critical for immune homeostasis and play a pivotal role in the maintenance of self-tolerance and immunity. Here, we review the important roles of miRNAs in the development and function of iNKT and Treg cells.
Collapse
Affiliation(s)
- Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
| | | | | | | | | |
Collapse
|