1
|
Batista-Duharte A, Téllez-Martínez D, de Andrade CR, Polesi MC, Portuondo DL, Carlos IZ. Transient Foxp3(+) regulatory T-cell depletion enhances protective Th1/Th17 immune response in murine sporotrichosis caused by Sporothrix schenckii. Immunobiology 2020; 225:151993. [PMID: 32962813 DOI: 10.1016/j.imbio.2020.151993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The role of regulatory T cells (Tregs) on protective immunity in fungal infections, is controversial. Sporotrichosis is an emerging and worldwide-distributed subcutaneous mycosis caused by various related thermodimorphic fungi of the genus Sporothrix. Previously, we showed an elevated percent of Tregs around 21 days post-infection (dpi) in C57BL/6 mice infected with either Sporothrix schenckii or Sporothrix brasiliensis, but the effect of these cells in the ongoing infection was not evaluated. Here, we aim to characterize the role of Foxp3+ Tregs in a subcutaneous S. schenckii infection model. The flow cytometric analyses showed that S. schenckii infection elicited an expansion of a splenic CD4+Foxp3+ population, including a subset of Helioslow+ after ex vivo stimulation with S. schenckii-heat killed yeast. Depletion of Tregs in DEREG mice revealed a reduction of fungal burden in the skin and systemically in liver and kidneys, associated with enhanced Th1 and Th17 responses. Altogether, our results reveal for the first time that Tregs depletion in ongoing S. schenckii infection improves the protective antifungal immunity and these data suggest that Tregs modulation could be explored as a potential therapeutic strategy in sporotrichosis.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Cleverton Roberto de Andrade
- São Paulo State University (UNESP), School of Dentistry, Department of Physiology & Pathology, Araraquara, SP, Brazil
| | - Marisa Campos Polesi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Deivys Leandro Portuondo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 2020; 582:416-420. [PMID: 32499641 PMCID: PMC7305989 DOI: 10.1038/s41586-020-2246-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Tregs) are required to control immune responses and maintain homeostasis, but are a significant barrier to anti-tumor immunity1. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of pro-inflammatory properties2, can promote autoimmunity and/or facilitate more effective tumor immunity3,4. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. Despite improved functional genetic tools that now allow for systematic interrogation, dissection of the gene regulatory programs that modulate Foxp3 expression has not yet been reported. In this study, we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Tregs and applied this technology to perform a targeted loss-of-function screen of ~490 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We discovered several novel modulators including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin modifying complex, was discovered to be a positive regulator that stabilized Foxp3 expression; whereas the screen suggested Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein and created defects in their suppressive function that led to spontaneous autoimmunity but protected against tumor growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Tregs could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Tregs. These results reveal novel modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.
Collapse
|
3
|
Zhu X, Chen Q, Liu Z, Luo D, Li L, Zhong Y. Low expression and hypermethylation of FOXP3 in regulatory T cells are associated with asthma in children. Exp Ther Med 2020; 19:2045-2052. [PMID: 32104264 PMCID: PMC7027311 DOI: 10.3892/etm.2020.8443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to determine the expression and methylation levels of forkhead transcription factor P3 (FOXP3) in peripheral blood CD4+CD25+ regulatory T cells (Tregs) harvested from children with asthma, and to explore the pathogenesis of asthma. The percentages of CD4+CD25+FOXP3+ Tregs in CD4+ T lymphocytes from 15 children with asthma and 15 healthy controls were measured by flow cytometry, and FOXP3 mRNA expression in the CD4+CD25+ Tregs was measured by reverse transcriptase-quantitative PCR. In addition, the forced expiratory volume in one second (FEV1) was measured to determine lung function. The methylation statuses of 16 CpG sites in two regions of the FOXP3 gene's exon and intron were analysed with bisulfite-specific PCR and pyrophosphate sequencing. The differences in methylation levels between the asthma and control groups were compared. The percentage of CD4+CD25+FOXP3+ Tregs in CD4+ T lymphocytes and FOXP3 mRNA expression were significantly lower in children with asthma than in control children (P<0.05). The FOXP3 mRNA levels in children with asthma were positively correlated with FEV1 (P<0.001; r=0.895). The methylation levels in 12 of the 16 studied CpG loci of the FOXP3 gene, and of the 6th CpG locus in the exon regions, were significantly higher in the asthma group compared with the control group (P<0.05). In summary, low expression and hypermethylation of the FOXP3 gene in the peripheral blood were associated with the pathogenesis of asthma in children. Thus, the FOXP3 mRNA expression level can be used to predict the severity of asthma in children.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Respiratory Department, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Qiang Chen
- Respiratory Department, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang Liu
- Clinical Laboratory, Jiangxi Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lan Li
- Respiratory Department, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Zhong
- Graduate School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Bahrami A, Fereidouni M, Pirro M, Bianconi V, Sahebkar A. Modulation of regulatory T cells by natural products in cancer. Cancer Lett 2019; 459:72-85. [DOI: 10.1016/j.canlet.2019.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
5
|
R, Agnihotri N, Singh AP, Bhatnagar A. Involvement of Regulatory T Cells and Their Cytokines Repertoire in Chemopreventive Action of Fish Oil in Experimental Colon Cancer. Nutr Cancer 2016. [DOI: 10.1080/01635581.2016.1212245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Qamar N, Fishbein AB, Erickson KA, Cai M, Szychlinski C, Bryce PJ, Schleimer RP, Fuleihan RL, Singh AM. Naturally occurring tolerance acquisition to foods in previously allergic children is characterized by antigen specificity and associated with increased subsets of regulatory T cells. Clin Exp Allergy 2016; 45:1663-72. [PMID: 25989379 DOI: 10.1111/cea.12570] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Food allergy affects approximately 6-8% of children, and increasing in prevalence. Some children naturally outgrow their food allergy without intervention, but the mechanisms by which this occurs remain poorly understood. We sought to investigate the role of regulatory T cells in the development of naturally acquired tolerance. METHODS Fifty-eight children (1-18 years) with either egg or peanut allergy, recent acquisition of natural tolerance to egg or peanut, or no food allergy were studied. Peripheral blood mononuclear cells (PBMC) from these groups were stimulated with relevant antigen for 48 h and flow cytometry performed to characterize both surface (CD3, CD4, CD25, CD14, CD19, and CD127) and intracellular markers (IL-10, Foxp3, and IL-5). RESULTS Resting PBMC from naturally tolerant patients had significantly increased CD3+CD4+CD25+CD127loFoxp3+ cells, when compared to allergic or control patients (mean 6.36 vs. 2.37 vs. 2.62%, respectively, P < 0.05). Upon stimulation with relevant antigen, naturally tolerant patients also had increased IL-10-expressing CD25+CD127lo cells (6.33 vs. 1.65 vs. 0.7, P < 0.01), Foxp3+ cells (mean 12.6 vs. 5.42 vs. 3%, P < 0.01), and CD4+ cells (mean 4.48 vs. 1.59 vs. 0.87%, P < 0.01); the increase was not observed in PBMCs from allergic or control patients. Additionally, this upregulation was only seen with relevant antigen stimulation and not upon stimulation with unrelated antigen. CONCLUSION The increased CD3+CD4+CD25+CD127lo cells at baseline and upon stimulation and increased induction of IL-10-producing cells of several types, including Tr1 cells, from naturally tolerant patients suggests an important role for regulatory T cell subsets in the acquisition of natural tolerance.
Collapse
Affiliation(s)
- N Qamar
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - A B Fishbein
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - K A Erickson
- Division of Allergy & Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M Cai
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - C Szychlinski
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - P J Bryce
- Division of Allergy & Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - R P Schleimer
- Division of Allergy & Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - R L Fuleihan
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - A M Singh
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA.,Division of Allergy & Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Cheng LS, Liu Y, Jiang W. Restoring homeostasis of CD4 + T cells in hepatitis-B-virus-related liver fibrosis. World J Gastroenterol 2015; 21:10721-10731. [PMID: 26478664 PMCID: PMC4600574 DOI: 10.3748/wjg.v21.i38.10721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/19/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4+ T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF.
Collapse
|
8
|
d’Hennezel E, Piccirillo CA. Functional plasticity in human FOXP3+regulatory T cells. Hum Vaccin Immunother 2014; 8:1001-5. [DOI: 10.4161/hv.20203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch-Schönlein purpura and primary IgA nephropathy. Pediatr Nephrol 2014; 29:1545-51. [PMID: 24687448 DOI: 10.1007/s00467-014-2807-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/25/2014] [Accepted: 03/10/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Henoch-Schönlein purpura (HSP) nephritis and primary IgA nephropathy (pIgAN) present with glomerular IgA deposits, but differ with regard to clinical features. The suspected involvement of different immune system pathways is largely unknown. METHODS This study was aimed at investigating some of the immunological features including Toll-like receptors (TLR), proteasome (PS)/immunoproteasome (iPS) switch, and the regulatory T cell system (Treg/Th17 cells) in 63 children with HSP with/without renal involvement and in 25 with pIgAN. Real-time PRC (Taqman) was used to quantify mRNA levels in peripheral blood mononuclear cells (PBMC). RESULTS The expression of mRNAs encoding for TLR4 in both HSP and pIgAN was higher than in controls (HC) and in both diseases FoxP3mRNA and TGF-β1mRNA expression was significantly lower than in HC. A switch from PS to iPS (LMP2/β1) was detected only in PBMC of HSP and it correlated with the level of TLR2mRNA, which was selectively increased only in children with HSP. CONCLUSION Children with HSP and pIgAN present with similar signs of engagement of the innate immunity and regulatory T cell depression. The increased immunoproteasome switch, which correlated with TLR2 activation, may suggest an innate immunity pathway peculiar to HSP vasculitic presentation. This research area also deserves further investigation for possible therapeutic applications.
Collapse
|
10
|
MiRNome and transcriptome aided pathway analysis in human regulatory T cells. Genes Immun 2014; 15:303-12. [PMID: 24848933 DOI: 10.1038/gene.2014.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
Owing to their manifold immune regulatory functions, regulatory T cells (Treg) have received tremendous interest as targets for therapeutic intervention of diverse immunological pathologies or cancer. Directed manipulation of Treg will only be achievable with extensive knowledge about the intrinsic programs that define their regulatory function. We simultaneously analyzed miR and mRNA transcript levels in resting and activated human Treg cells in comparison with non-regulatory conventional T cells (Tcon). Based on experimentally validated miR-target information, both transcript levels were integrated into a comprehensive pathway analysis. This strategy revealed characteristic signal transduction pathways involved in Treg biology such as T-cell receptor-, Toll-like receptor-, transforming growth factor-β-, JAK/STAT (Janus kinase/signal transducers and activators of transcription)- and mammalian target of rapamycin signaling, and allowed for the prediction of specific pathway activities on the basis of miR and mRNA transcript levels in a probabilistic manner. These data encourage new concepts for targeted control of Treg cell effector functions.
Collapse
|
11
|
Liu ZQ, Song JP, Liu X, Jiang J, Chen X, Yang L, Hu T, Zheng PY, Liu ZG, Yang PC. Mast cell-derived serine proteinase regulates T helper 2 polarization. Sci Rep 2014; 4:4649. [PMID: 24721951 PMCID: PMC3983597 DOI: 10.1038/srep04649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/26/2014] [Indexed: 01/10/2023] Open
Abstract
Although mast cells play a critical role in allergic reactions, the cells are also involved in the protective immunity in the body. This study aims to investigate the role of mast cells in immune regulation during aberrant T helper (Th)2 responses. In this study, an adoptive antigen-specific Th2 response model was established with mast cell-deficient mice to test the role of mast cell in the immune regulation. Cell culture was employed to test the role of mast cells in the modulation of the expression of B cell lymphoma 6 protein (Bcl-6) in Th2 cells. The results showed that after adoptive transfer with immune cells, the mast cell-deficient mice showed stronger Th2 pattern responses in the intestine than that in the mast cell-sufficient mice. Mast cell-derived mouse mast cell protease-6 increased the expression of Bcl-6 in Th2 cells. Bcl-6 inhibited the expression of GATA-3 in Th2 cells, subsequently, forkhead box P3 was increased and the Th2 cytokines were reduced in the cells; the cells thus showed the immune regulatory properties similar to regulatory T cells. We conclude that bedsides initiating immune inflammation, mast cells also contribute to the immune regulation on Th2 polarization.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2] Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China [3]
| | - Jiang-Ping Song
- 1] State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China [2]
| | - Xiaoyu Liu
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2]
| | - Jing Jiang
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2] Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China [3]
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Litao Yang
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Tianyong Hu
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, Zhengzhou University, Zhengzhou, China
| | - Zhi-Gang Liu
- ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
12
|
Avalos-Martínez CE, Rodríguez-Alba JC, Berrón-Ruiz L, Romero-Ramírez H, Santos-Argumedo L, Jiménez-Zamudio LA, Domínguez-López ML, Vega-López A, García-Latorre E. Measurement of suppressor activity of T CD4⁺CD25⁺ T reg cells using bromodeoxyuridine incorporation assay. Immunol Invest 2013; 42:369-81. [PMID: 23883202 DOI: 10.3109/08820139.2013.773337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The suppressor effect of T regulatory lymphocytes in co-cultures with T effector cells obtained by magnetic columns from healthy donors and activated by CD3/CD28 was measured by a proliferation assay using BrdU incorporation and an ELISA test. Tritiated thymidine incorporation was used as a reference since it is the gold standard for proliferation assays. Both methods were used simultaneously in the same samples in order to compare them. Correlation between them was statistically significant (p < 0.001). The purification using magnetic columns was very efficient since CD4⁺CD25⁺ cells were also FOXP3⁺ therefore; they were identified as suppressor T cells. The use of BrdU incorporation in suppression assays is an excellent method that avoids the use of radioactive contaminating materials.
Collapse
Affiliation(s)
- Claudia E Avalos-Martínez
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Miguel Hidalgo, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Comparative approach to define increased regulatory T cells in different cancer subtypes by combined assessment of CD127 and FOXP3. Clin Dev Immunol 2011; 2011:734036. [PMID: 21904560 PMCID: PMC3166761 DOI: 10.1155/2011/734036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/29/2011] [Indexed: 12/17/2022]
Abstract
In recent years an increase of functional CD4+CD25+ regulatory T cells (Treg cells) has been established for patients with
solid tumors, acute leukemias, and lymphomas. We have reported an expanded pool of CD4+CD25high Treg cells in patients
with chronic lymphatic leukemia (CLL), multiple myeloma (MM) as well as its premalignant precursor monoclonal gammopathy of undetermined significance (MGUS). In healthy individuals, low-level expression of
CD127 on T cells in addition to the expression of FOXP3 has been associated with Treg cells. Here, we demonstrate that the expanded FOXP3+ T-cell population in
patients with colorectal cancer, CLL, MGUS, MM, follicular lymphoma, and Hodgkin's disease are exclusively CD127low Treg cells and
were strongly suppressive. A significant portion of CD127lowFOXP3+ Treg cells expressed only low levels of CD25 suggesting
that the previously reported expansion of CD25+ Treg cells underestimates the true expansion. The assessment of CCR7 and CD45RA expression on
the expanded CD4+CD127lowFOXP3+ Treg cells revealed an increase of both naïve as well as central
and effector memory Treg cells in peripheral blood. Our data strongly support superiority of combined CD127 and FOXP3 analysis in comparison to CD25 and FOXP3 assessment
for further quantification of Treg cells in malignant diseases.
Collapse
|