1
|
Zhang XL, Li JP, Wu MZ, Wu JK, He SY, Lu Y, Ding QH, Wen Y, Long LZ, Fu CG, Farman A, Shen AL, Peng J. Quercetin Protects Against Hypertensive Renal Injury by Attenuating Apoptosis: An Integrated Approach Using Network Pharmacology and RNA Sequencing. J Cardiovasc Pharmacol 2024; 84:370-382. [PMID: 39027976 DOI: 10.1097/fjc.0000000000001598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
ABSTRACT Quercetin is known for its antihypertensive effects. However, its role on hypertensive renal injury has not been fully elucidated. In this study, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Annexin V staining were used to assess the pathological changes and cell apoptosis in the renal tissues of angiotensin II (Ang II)-infused mice and Ang II-stimulated renal tubular epithelial cell line (NRK-52E). A variety of technologies, including network pharmacology, RNA-sequencing, immunohistochemistry, and Western blotting, were performed to investigate its underlying mechanisms. Network pharmacology analysis identified multiple potential candidate targets (including TP53, Bcl-2, and Bax) and enriched signaling pathways (including apoptosis and p53 signaling pathway). Quercetin treatment significantly alleviated the pathological changes in renal tissues of Ang II-infused mice and reversed 464 differentially expressed transcripts, as well as enriched several signaling pathways, including those related apoptosis and p53 pathway. Furthermore, quercetin treatment significantly inhibited the cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells. In addition, quercetin treatment inhibited the upregulation of p53, Bax, cleaved-caspase-9, and cleaved-caspase-3 protein expression and the downregulation of Bcl-2 protein expression in both renal tissue of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Moreover, the molecular docking results indicated a potential binding interaction between quercetin and TP53. Quercetin treatment significantly attenuated hypertensive renal injury and cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells and by targeting p53 may be one of the potential underlying mechanisms.
Collapse
Affiliation(s)
- Xiu-Li Zhang
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jia-Peng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mei-Zhu Wu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jin-Kong Wu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Shu-Yu He
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Yao Lu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Qi-Hang Ding
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Ying Wen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Lin-Zi Long
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang-Geng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China ; and
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ali Farman
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - A-Ling Shen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China ; and
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Zheng L, Mei W, Zhou J, Wei X, Huang Z, Lin X, Zhang L, Liu W, Wu Q, Li J, Yan Y. Fluorofenidone attenuates renal fibrosis by inhibiting lysosomal cathepsin‑mediated NLRP3 inflammasome activation. Exp Ther Med 2024; 27:142. [PMID: 38476910 PMCID: PMC10928820 DOI: 10.3892/etm.2024.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, no antifibrotic drug in clinical use can effectively treat renal fibrosis. Fluorofenidone (AKFPD), a novel pyridone agent, significantly reduces renal fibrosis by inhibiting the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome; however, the underlying mechanism of this inhibition is not fully understood. The present study aimed to reveal the molecular mechanism underlying the suppression of NLRP3 inflammasome activation by AKFPD. It investigated the effect of AKFPD on NLRP3 activation and lysosomal cathepsins in a unilateral ureteral obstruction (UUO) rat model, and hypoxia/reoxygenation (H/R)-treated HK-2 cells and murine peritoneal-derived macrophages (PDMs) stimulated with lipopolysaccharide (LPS) and ATP. The results confirmed that AKFPD suppressed renal interstitial fibrosis and inflammation by inhibiting NLRP3 inflammasome activation in UUO rat kidney tissues. In addition, AKFPD reduced the production of activated caspase-1 and maturation of IL-1β by suppressing NLRP3 inflammasome activation in H/R-treated HK-2 cells and murine PDMs stimulated with LPS and ATP. AKFPD also decreased the activities of cathepsins B, L and S both in vivo and in vitro. Notably, AKFPD downregulated cathepsin B expression and NLRP3 colocalization in the cytoplasm after lysosomal disruptions. Overall, the results suggested that AKFPD attenuates renal fibrosis by inhibiting lysosomal cathepsin-mediated activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Linfeng Zheng
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Mei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Wei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhijuan Huang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaozhen Lin
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Liu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Wu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinhong Li
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Long L, Zhang X, Wen Y, Li J, Wei L, Cheng Y, Liu H, Chu J, Fang Y, Xie Q, Shen A, Peng J. Qingda Granule Attenuates Angiotensin II-Induced Renal Apoptosis and Activation of the p53 Pathway. Front Pharmacol 2022; 12:770863. [PMID: 35222007 PMCID: PMC8867011 DOI: 10.3389/fphar.2021.770863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/28/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Qingda granules (QDG) exhibit antihypertension and multiple-target-organ protection. However, the therapeutic potential of QDG on hypertensive renal injury remains unknown. Therefore, the main objective of the current study is to explore the effects and underlying mechanisms of QDG treatment on renal injury in angiotensin (Ang) II-infused mice. Methods and results: Mice were infused with Ang II (500 ng/kg/min) or saline for 4 weeks with subcutaneously implanted osmotic pumps. After infusion, mice in the Ang II + QDG group were intragastrically administrated with QDG daily (1.145 g/kg/day), whereas the control group and Ang II group were intragastrically administrated with the same amount of double-distilled water. Blood pressure of the mice monitored using the CODA™ noninvasive blood pressure system revealed that QDG treatment significantly attenuated elevated blood pressure. Moreover, hematoxylin-eosin staining indicated that QDG treatment ameliorated Ang II-induced renal morphological changes, including glomerular sclerosis and atrophy, epithelial cell atrophy, and tubular dilatation. RNA-sequencing (RNA-seq) identified 662 differentially expressed transcripts (DETs) in renal tissues of Ang II-infused mice, which were reversed after QDG treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis based on DETs in both comparisons of Ang II vs. Control and Ang II + QDG vs. Ang II identified multiple enriched pathways, including apoptosis and p53 pathways. Consistently, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining and Annexin V staining revealed that QDG treatment significantly attenuated Ang II-induced cell apoptosis in renal tissues and cultured renal tubular epithelial cell lines (NRK-52E). Furthermore, western blot analysis indicated that Ang II infusion significantly upregulated the protein expression of p53, BCL2-associated X (BAX), cle-caspase-9, and cle-caspase-3, while downregulating the protein expression of BCL-2 in renal tissues, which were attenuated after QDG treatment. Conclusion: Collectively, QDG treatment significantly attenuated hypertensive renal injury, partially by attenuating renal apoptosis and suppressing p53 pathways, which might be the underlying mechanisms.
Collapse
Affiliation(s)
- Linzi Long
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Ying Wen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Huixin Liu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Yi Fang
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Aling Shen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China
| |
Collapse
|
4
|
Gastrin, via activation of PPARα, protects the kidney against hypertensive injury. Clin Sci (Lond) 2021; 135:409-427. [PMID: 33458737 DOI: 10.1042/cs20201340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.
Collapse
|
5
|
Dai Q, Zhang Y, Liao X, Jiang Y, Lv X, Yuan X, Meng J, Xie Y, Peng Z, Yuan Q, Tao L, Huang L. Fluorofenidone Alleviates Renal Fibrosis by Inhibiting Necroptosis Through RIPK3/MLKL Pathway. Front Pharmacol 2021; 11:534775. [PMID: 33390935 PMCID: PMC7772387 DOI: 10.3389/fphar.2020.534775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cell death and sterile inflammation are major mechanisms of renal fibrosis, which eventually develop into end-stage renal disease. “Necroptosis” is a type of caspase-independent regulated cell death, and sterile inflammatory response caused by tissue injury is strongly related to necrosis. Fluorofenidone (AKF-PD) is a novel compound shown to ameliorate renal fibrosis and associated inflammation. We investigated whether AKF-PD could alleviate renal fibrosis by inhibiting necroptosis. Unilateral ureteral obstruction (UUO) was used to induce renal tubulointerstitial fibrosis in C57BL/6J mice. AKF-PD (500 mg/kg) or necrostatin-1 (Nec-1; 1.65 mg/kg) was administered simultaneously for 3 and 7 days. Obstructed kidneys and serum were harvested after euthanasia. AKF-PD and Nec-1 ameliorated renal tubular damage, inflammatory-cell infiltration, and collagen deposition, and the expression of proinflammatory factors (interlukin-1β, tumor necrosis factor [TNF]-α) and chemokines (monocyte chemoattractant protein-1) decreased. AKF-PD or Nec-1 treatment protected renal tubular epithelial cells from necrosis and reduced the release of lactate dehydrogenase in serum. Simultaneously, production of receptor-interacting protein kinase (RIPK)3 and mixed lineage kinase domain-like protein (MLKL) was also reduced 3 and 7 days after UUO. AKF-PD and Nec-1 significantly decreased the percentage of cell necrosis, inhibiting the phosphorylation of MLKL and RIPK3 in TNF-α- and Z-VAD–stimulated human proximal tubular epithelial (HK-2) cells. In conclusion, AKF-PD and Nec-1 have effective anti-inflammatory and antifibrotic activity in UUO-induced renal tubulointerstitial fibrosis, potentially mediated by the RIPK3/MLKL pathway.
Collapse
Affiliation(s)
- Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Jiang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Meng
- Department of Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - LiJian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Piotrowska A, Chmielewska M, Andrzejewski W, Dziegiel P, Podhorska-Okolow M. Influence of Angiotensin II on cell viability and apoptosis in rat renal proximal tubular epithelial cells in in vitro studies. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320949850. [PMID: 32962526 PMCID: PMC7649907 DOI: 10.1177/1470320320949850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction: Angiotensin II (Ang II) is multifunctional peptide that plays an important role in blood pressure regulation and maintenance electrolyte homeostasis. It shows biological effects by activating two main receptors: AT1 and AT2. The aim of the present work was to investigate the effect of Ang II on NRK-52E cells in in vitro studies. Furthermore, an attempt was made to determine the effectiveness of the AT1 and AT2 receptor blocker activity (respectively, losartan and PD123319). Methods: The study was carried out using adherent NRK-52E cell line. Immunofluorescence and Western Blot method were used to confirm the presence of AT1 and AT2 receptors in the cells. The SRB and MTT tests showed decrease in the viability of NRK-52E cells incubated with Ang II in comparison to the control (without Ang II). Results: The blockade of the AT1 receptor caused an increase in cell viability in comparison to cells incubated with Ang II only. The blockade of AT2 receptor also triggered statistically significant increase in cell viability in comparison with cells only exposed to Ang II. Combined administration of blockers for both receptors (losartan and PD123319) decreased Ang II cytotoxicity against NRK-52E cell line. The apoptosis was only observed in cells incubated with Ang II in comparison with control cells. However, simultaneous use of both blockers caused statistically significant decrease in apoptosis. Conclusions: The result of our study indicates that Ang II causes damaging effect on NRK-52E cells by directing them to programmed cell death. It seems that not only does the AT2 receptor itself play an important role in the induction of apoptosis, but also its interaction with AT1 receptor does as well.
Collapse
Affiliation(s)
- Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland
| | - Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Waldemar Andrzejewski
- Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland.,Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | | |
Collapse
|
7
|
Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, Hong W, Yang X. Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage. Eur J Med Chem 2020; 191:112154. [PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Meiling Chen
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Xiaohong Sang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yucheng Wang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wei Hong
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
8
|
Cordyceps cicadae Prevents Renal Tubular Epithelial Cell Apoptosis by Regulating the SIRT1/p53 Pathway in Hypertensive Renal Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7202519. [PMID: 32419819 PMCID: PMC7201718 DOI: 10.1155/2020/7202519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
Abstract
Hypertensive renal injury is a primary etiology of end-stage renal disease, and satisfactory therapeutic strategies are urgently required. Cordyceps cicadae, a traditional Chinese herb, has potential renoprotective benefits and is widely used in the treatment of many kidney diseases. To investigate the mechanisms underlying the renoprotective effect of C. cicadae on hypertensive renal injury, we studied the effect of C. cicadae on tubular epithelial cells (TECs) in a spontaneously hypertensive rat (SHR) model and angiotensin II- (AngII-) cultured primary TECs. Our study showed that C. cicadae treatment could decrease 24-hour urine albumin, albumin-to-creatinine ratio (ACR), β2-MG level, and kidney injury molecule-1 (kim-1) level in SHR urine, alleviate interstitial fibrosis, and reduce α-smooth muscle actin (α-SMA) expression in SHR kidney. In primary TECs, medicated serum containing C. cicadae (CSM) might significantly reduce the AngII-induced production of kim-1 and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, C. cicadae treatment could decrease TEC apoptosis in SHRs as assessed by the terminal transferase-mediated biotin dUTP nick-end labeling (TUNEL) assay. CSM could inhibit caspase-3 activity and enhance cellular viability as measured by methyl thiazolyl tetrazolium in AngII-cultured TECs, suggesting that CSM might reduce the apoptosis level in TECs induced by AngII. We found that the SIRT1 expression level was markedly lowered, while the protein level of acetylated-p53 was elevated in the TECs of patients with hypertensive renal injury and SHRs. C. cicadae presented the effect of regulating the SIRT1/p53 pathway. Further SIRT1 inhibition with EX527 reversed the effect of C. cicadae on AngII-induced apoptosis. Taken together, our results indicate that C. cicadae offers a protective effect on TECs under hypertensive conditions, which may be related to its antiapoptotic effect through regulation of the SIRT1/p53 pathway.
Collapse
|
9
|
Jiang Y, Quan J, Chen Y, Liao X, Dai Q, Lu R, Yu Y, Hu G, Li Q, Meng J, Xie Y, Peng Z, Tao L. Fluorofenidone protects against acute kidney injury. FASEB J 2019; 33:14325-14336. [DOI: 10.1096/fj.201901468rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- YuPeng Jiang
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jiao Quan
- Department of Nutriology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yang Chen
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Rong Lu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qianbin Li
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Department of Respirology, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
Yang H, Zhang W, Xie T, Wang X, Ning W. Fluorofenidone inhibits apoptosis of renal tubular epithelial cells in rats with renal interstitial fibrosis. ACTA ACUST UNITED AC 2019; 52:e8772. [PMID: 31664306 PMCID: PMC6826897 DOI: 10.1590/1414-431x20198772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the mechanism of fluorofenidone (AKF-PD) in treating renal interstitial fibrosis in rats with unilateral urinary obstruction (UUO). Thirty-two male Sprague-Dawley rats were randomly divided into sham, UUO, UUO + enalapril, and UUO + AKF-PD groups. All rats, except sham, underwent left urethral obstruction surgery to establish the animal model. Rats were sacrificed 14 days after surgery, and serum was collected for renal function examination. Kidneys were collected to observe pathological changes. Immunohistochemistry was performed to assess collagen I (Col I) protein expression, and terminal deoxynucleotidyl transferase-mediated nick end-labeling staining to observe the apoptosis of renal tubular epithelial cells. The expression of Fas-associated death domain (FADD), apoptotic protease activating factor-1 (Apaf-1), and C/EBP homologous protein (CHOP) proteins was evaluated by immunohistochemistry and western blot analysis. AKF-PD showed no significant effect on renal function in UUO rats. The pathological changes were alleviated significantly after enalapril or AKF-PD treatment, but with no significant differences between the two groups. Col I protein was overexpressed in the UUO group, which was inhibited by both enalapril and AKF-PD. The number of apoptotic renal tubular epithelial cells was much higher in the UUO group, and AKF-PD significantly inhibited epithelial cells apoptosis. The expression of FADD, Apaf-1, and CHOP proteins was significantly upregulated in the UUO group and downregulated by enalapril and AKF-PD. In conclusion, AKF-PD improved renal interstitial fibrosis by inhibiting apoptosis of renal tubular epithelial cells in rats with UUO.
Collapse
Affiliation(s)
- Hui Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Xie
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangbin Ning
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Chen Y, Wang N, Yuan Q, Qin J, Hu G, Li Q, Tao L, Xie Y, Peng Z. The Protective Effect of Fluorofenidone against Cyclosporine A-Induced Nephrotoxicity. Kidney Blood Press Res 2019; 44:656-668. [PMID: 31387101 DOI: 10.1159/000500924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Cyclosporine A (CsA) is an immunosuppressant drug that is used during organ transplants. However, its utility is limited by its nephrotoxic potential. This study aimed to investigate whether fluorofenidone (AKF-PD) could provide protection against CsA-induced nephrotoxicity. METHODS Eighty-five male Sprague-Dawley rats were divided into 5 groups: drug solvent, CsA, CsA with AKF-PD (250, 500 mg/kg/day), and CsA with pirfenidone (PFD, 250 mg/kg/day). Tubulointerstitial injury index, extracellular matrix (ECM) deposition, expression of type I and IV collagen, transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), Fas ligand (FASL), cleaved-caspase-3, cleaved-poly(ADP-ribose) polymerase (PARP)-1, and the number of transferase-mediated nick end-labeling (TUNEL)-positive renal tubule cells were determined. In addition, levels of TGF-β1, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of annexin V-positive cells were determined in rat proximal tubular epithelial cells (NRK-52E) treated with CsA (20 μmol/L), AKF-PD (400 μg/mL), PFD (400 μg/mL), and GW788388 (5 μmol/L). RESULTS AKF-PD (250, 500 mg/kg/day) significantly reduced tubulointerstitial injury, ECM deposition, expression of type I and IV collagen, TGF-β1, PDGF, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of TUNEL-positive renal tubule cells in the CsA-treated kidneys. In addition, AKF-PD (400 μg/mL) significantly decreased TGF-β1, FASL, cleaved-caspase-3, and PARP-1 expression in NRK-52E cells and further reduced the number of annexin V-positive cells. CONCLUSION AKF-PD protect kidney from fibrosis and apoptosis in CsA-induced kidney injury.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Nasui Wang
- Division of Endocrinology and Metabolism, Department of Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Qin
- Department of Nephrology, Changsha Central Hospital, Changsha, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,
| |
Collapse
|
12
|
Zhang Y, Su X, Zou F, Xu T, Pan P, Hu C. Toll-like receptor-4 deficiency alleviates chronic intermittent hypoxia-induced renal injury, inflammation, and fibrosis. Sleep Breath 2018; 23:503-513. [PMID: 30099700 DOI: 10.1007/s11325-018-1704-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA)-associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH) triggered renal damage. This study aims to investigate the role of toll-like receptor-4 (TLR4) in underlying mechanism involved chronic intermittent hypoxia (CIH)-induced renal damage. METHODS C57BL/6J mice with normal TLR4 (TLR4 WT) or deficient TLR4 (TLR4 KO) were divided into four groups and exposed to normal air (NA) and CIH: TLR4 WT + NA, TLR4 KO + NA, TLR4 WT + CIH, and TLR4 KO + CIH. CIH lasted for 8 h/day and 7 days/week for 6 weeks. Renal injury and inflammation were evaluated by histology and ELISA. Renal tubular apoptosis, macrophages, and fibroblasts recruitment were determined by TUNEL assay, immunofluorescence, and western blot. RESULTS In response to CIH, TLR4 deficiency alleviated renal histological injury, renal dysfunction, and fibrosis. TLR4 deficiency ameliorated renal dysfunction (serum BUN and creatinine) and tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL, and western blot of apoptotic protein (caspase-3, c-caspase-3, and Bax/Bcl-2 ratio). Furthermore, we also found TLR4 deficiency abrogated CIH-induced macrophages (CD68) and fibroblasts (α-SMA) recruitment, further reducing expression of extra-cellular matrix protein (collagen I and collagen IV) and inflammatory cytokines release (IL-6, TNF-α, and MCP-1). Finally, we used immunohistochemistry to demonstrate that TLR4 deficiency attenuated increased expression of MyD88 and NF-kB p65 after CIH treatment. CONCLUSIONS Our data suggest that TLR4 plays a vital role in CIH-induced renal injury, inflammation and fibrosis, and inhibition of TLR4 probably provides a therapeutic potential for CIH-induced kidney damage.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Fangfang Zou
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Tengjuan Xu
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Pinhua Pan
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| |
Collapse
|
13
|
Zheng L, Zhang J, Yuan X, Tang J, Qiu S, Peng Z, Yuan Q, Xie Y, Mei W, Tang Y, Meng J, Hu G, Tao L. Fluorofenidone attenuates interleukin-1β production by interacting with NLRP3 inflammasome in unilateral ureteral obstruction. Nephrology (Carlton) 2018; 23:573-584. [PMID: 28437591 DOI: 10.1111/nep.13062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/03/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Linfeng Zheng
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Jin Zhang
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Xiangning Yuan
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Juan Tang
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Sisi Qiu
- Department of Gastroenterology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Zhangzhe Peng
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Qiongjing Yuan
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Yanyun Xie
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Wenjuan Mei
- Department of Nephrology Medicine; First Affiliated Hospital of Nanchang University; Nanchang Jiangxi China
| | - Yiting Tang
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Gaoyun Hu
- Department of Medical Chemistry, School of Pharmaceutical Sciences; Central South University; Changsha Hunan China
| | - Lijian Tao
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| |
Collapse
|
14
|
Tang J, Li J, Li G, Zhang H, Wang L, Li D, Ding J. Spermidine-mediated poly(lactic- co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int J Nanomedicine 2017; 12:6687-6704. [PMID: 28932114 PMCID: PMC5598552 DOI: 10.2147/ijn.s140569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, fatal lung disease with poor survival. The advances made in deciphering this disease have led to the approval of different antifibrotic molecules, such as pirfenidone and nintedanib. An increasing number of studies with particles (liposomes, nanoparticles [NPs], microspheres, nanopolymersomes, and nanoliposomes) modified with different functional groups have demonstrated improvement in lung-targeted drug delivery. In the present study, we prepared, characterized, and evaluated spermidine (Spd)-modified poly(lactic-co-glycolic acid) (PLGA) NPs as carriers for fluorofenidone (AKF) to improve the antifibrotic efficacy of this drug in the lung. Spd-AKF-PLGA NPs were prepared and functionalized by modified solvent evaporation with Spd and polyethylene glycol (PEG)-PLGA groups. The size of Spd-AKF-PLGA NPs was 172.5±4.3 nm. AKF release from NPs was shown to fit the Higuchi model. A549 cellular uptake of an Spd-coumarin (Cou)-6-PLGA NP group was found to be almost twice as high as that of the Cou-6-PLGA NP group. Free Spd and difluoromethylornithine (DFMO) were preincubated in A549 cells to prove uptake of Spd-Cou-6-PLGA NPs via a polyamine-transport system. As a result, the uptake of Spd-Cou-6-PLGA NPs significantly decreased with increased Spd concentrations in incubation. At higher Spd concentrations of 50 and 500 µM, uptake of Spd-Cou-6-PLGA NPs reduced 0.34- and 0.49-fold from that without Spd pretreatment. After pretreatment with DFMO for 36 hours, cellular uptake of Spd-Cou-6-PLGA NPs reached 1.26-fold compared to the untreated DFMO group. In a biodistribution study, the drug-targeting index of Spd-AKF-PLGA NPs in the lung was 3.62- and 4.66-fold that of AKF-PLGA NPs and AKF solution, respectively. This suggested that Spd-AKF-PLGA NPs accumulated effectively in the lung. Lung-histopathology changes and collagen deposition were observed by H&E staining and Masson staining in an efficacy study. In the Spd-AKF-PLGA NP group, damage was further improved compared to the AKF-PLGA NP group and AKF-solution group. The results indicated that Spd-AKF-PLGA NPs are able to be effective nanocarriers for anti-pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Jing Tang
- School of Pharmaceutical Sciences, Changsha Medical University
| | - Jianming Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Guo Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Haitao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu
| | - Dai Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| |
Collapse
|
15
|
Liu C, Mei W, Tang J, Yuan Q, Huang L, Lu M, Wu L, Peng Z, Meng J, Yang H, Shen H, Lv B, Hu G, Tao L. Mefunidone attenuates tubulointerstitial fibrosis in a rat model of unilateral ureteral obstruction. PLoS One 2015; 10:e0129283. [PMID: 26042668 PMCID: PMC4456380 DOI: 10.1371/journal.pone.0129283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown. METHODS Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages. RESULTS Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3. CONCLUSION Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjuan Mei
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miaomiao Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Meng
- Department of Respiration, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Lv
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gaoyun Hu
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
16
|
Tang J, Liu CY, Lu MM, Zhang J, Mei WJ, Yang WJ, Xie YY, Huang L, Peng ZZ, Yuan QJ, Liu JS, Hu GY, Tao LJ. Fluorofenidone protects against renal fibrosis by inhibiting STAT3 tyrosine phosphorylation. Mol Cell Biochem 2015; 407:77-87. [PMID: 26033204 DOI: 10.1007/s11010-015-2456-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/16/2015] [Indexed: 12/17/2022]
Abstract
Signaling through the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, especially JAK2/STAT3, is involved in renal fibrosis. Fluorofenidone (FD), a novel pyridone agent, exerts anti-fibrotic effects in vitro and in vivo. Herein, we sought to investigate whether FD demonstrates its inhibitory function through preventing JAK2/STAT3 pathway. In this study, we examined the effect of FD on activation of rat renal interstitial fibroblasts, glomerular mesangial cells (GMC), and expression of JAK2/STAT3. Moreover, we explored the histological protection effects of FD in UUO rats, db/db mice, and phosphorylation of JAK2/STAT3 cascade. Our studies found that pretreatment with FD resulted in blockade of activation of fibroblast and GMC manifested by fibronectin (FN) and α-smooth muscle actin (α-SMA) protein expression and decline of STAT3 tyrosine phosphorylation induced by IL-6 or high glucose. In unilateral ureteral obstruction rats and a murine model of spontaneous type 2 diabetes (db/db mice), treatment with FD blocked the expression of FN and α-SMA, prevented renal fibrosis progression, and attenuated STAT3 activation. However, FD administration did not interfere with JAK2 activation both in vivo and in vitro. In summary, the molecular mechanism by which FD exhibits renoprotective effects appears to involve the inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Juan Tang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fluorofenidone inhibits macrophage IL-1β production by suppressing inflammasome activity. Int Immunopharmacol 2015; 27:148-53. [PMID: 25983199 DOI: 10.1016/j.intimp.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/22/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022]
Abstract
Interleukin-1 beta (IL-1β) is a potent pro-inflammatory and pro-fibrotic cytokine that plays an important role in renal fibrosis. Fluorofenidone (AKF-PD) is a novel pyridone agent that exerts a strong renal anti-fibrotic effect. We previously found that administration of AKF-PD could significantly attenuate IL-1β production in vitro and in vivo. However, the underlying mechanism is not fully understood. Here we show that AKF-PD has no effect on the expression of pro-IL-1β in activated mouse macrophages in vitro. Instead, AKF-PD inhibits the inflammasome, lowering caspase-1 levels and thereby decreasing cleavage of pro-IL-1β into IL-1β. AKF-PD was found to block inflammasome activity induced by various signals, including ATP, alum crystals, and Salmonella typhimurium. These results provide a novel mechanistic insight into how AKF-PD exerts its anti-inflammatory and anti-fibrotic activities, and suggest that AKF-PD might block IL-1β production via suppression of inflammasomes in renal fibrosis. In addition, the results suggest that AKF-PD may be of therapeutic potential in other inflammasome-related diseases.
Collapse
|
18
|
Peng Y, Yang H, Wang N, Ouyang Y, Yi Y, Liao L, Shen H, Hu G, Wang Z, Tao L. Fluorofenidone attenuates hepatic fibrosis by suppressing the proliferation and activation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2014; 306:G253-63. [PMID: 24337009 DOI: 10.1152/ajpgi.00471.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone agent. The purpose of this study is to investigate the inhibitory effects of AKF-PD on liver fibrosis in rats and the involved molecular mechanism related to hepatic stellate cells (HSCs). Rats treated with dimethylnitrosamine or CCl4 were randomly divided into normal, model, AKF-PD treatment, and pirfenidone (PFD) treatment groups. The isolated primary rat HSCs were treated with AKF-PD and PFD respectively. Cell proliferation and cell cycle distribution were analyzed by bromodeoxyuridine and flow cytometry, respectively. The expression of collagen I and α-smooth muscle actin (α-SMA) were determined by Western blot, immunohistochemical staining, and real-time RT-PCR. The expression of cyclin D1, cyclin E, and p27(kip1) and phosphorylation of MEK, ERK, Akt, and 70-kDa ribosomal S6 kinase (p70S6K) were detected by Western blot. AKF-PD significantly inhibited PDGF-BB-induced HSC proliferation and activation by attenuating the expression of collagen I and α-SMA, causing G0/G1 phase cell cycle arrest, reducing expression of cyclin D1 and cyclin E, and promoting expression of p27(kip1). AKF-PD also downregulated PDGF-BB-induced MEK, ERK, Akt, and p70S6K phosphorylation in HSCs. In rat liver fibrosis, AKF-PD alleviated hepatic fibrosis by decreasing necroinflammatory score and semiquantitative score, and reducing expression of collagen I and α-SMA. AKF-PD attenuated the progression of hepatic fibrosis by suppressing HSCs proliferation and activation via the ERK/MAPK and PI3K/Akt signaling pathways. AKF-PD may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
He P, Zhang D, Li H, Yang X, Li D, Zhai Y, Ma L, Feng G. Hepatitis B virus X protein modulates apoptosis in human renal proximal tubular epithelial cells by activating the JAK2/STAT3 signaling pathway. Int J Mol Med 2013; 31:1017-29. [PMID: 23483208 PMCID: PMC3658604 DOI: 10.3892/ijmm.2013.1295] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus X protein (HBx) is a multifunctional protein, and it activates multiple signal transduction pathways in multiple types of cells and regulates the process of cell apoptosis. In the present study, we mainly investigated the correlation between HBx and renal tubular epithelial cell apoptosis in hepatitis B virus-associated glomerulonephritis (HBVGN) and the possible signaling mechanism. Cell apoptosis in nephridial tissues of patients with HBVGN were determined by the TUNEL method. HBx, p-STAT3 and STAT3 levels in nephridial tissues were determined by immunohistochemical assay, and a correlation analysis between HBx expression levels and apoptosis index in nephridial tissues was conducted. The activation of the JAK2/STAT3 signaling pathway in HK-2 cells and the expression of the apoptosis-related proteins Bax and Bcl-2 were determined by western blot analysis following transfection with the HBx eukaryotic expression vector. Cellular proliferation activity was determined by the CCK-8 method, and cell apoptosis was determined with HO33342 staining using transmission electron microscopy and Annexin V/PI double staining flow cytometry. The results revealed that the apoptosis index in nephridial tissues of patients with HBVGN was significantly higher when compared to that of the control group, and p-STAT3 expression levels in HBVGN nephridial tissues were significantly increased. In the control group, no HBx expression was observed in the nephridial tissues, whereas HBx expression was found in the nephridial tissues of 86% of the patients with HBVGN. The HBx expression levels had a linear correlation with the apoptosis index in the nephridial tissues. After target gene HBx infection, expression levels of both p-JAK2 and p-STAT3 in human proximal HK-2 cells were significantly increased, and the Bax/Bcl-2 ratio was also significantly increased. At the same time, cellular proliferation of HK-2 cells was significantly inhibited, and the rate of apoptosis was increased. After incubation with AG490, the JAK2/STAT3 signaling pathway was partially blocked, which caused a decrease in the Bax/Bcl-2 ratio and reduced cell apoptosis caused by HBx. In conclusion, HBx upregulates the Bax/Bcl-2 ratio by activating the JAK2/STAT3 signaling pathway to cause renal tubular epithelial cell apoptosis, and it is possibly involved in the pathogenic mechanism of nephridial tissue damage caused by HBV.
Collapse
Affiliation(s)
- Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Fluorofenidone Attenuates Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice Via Restoring Caveolin 1 Expression and Inhibiting Mitogen-Activated Protein Kinase Signaling Pathway. Shock 2012; 38:567-73. [DOI: 10.1097/shk.0b013e31826fe992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|