1
|
Fan J, To KKW, Chen ZS, Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist Updat 2023; 66:100905. [PMID: 36463807 DOI: 10.1016/j.drup.2022.100905] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Multidrug resistance (MDR) is the phenomenon in which cancer cells simultaneously develop resistance to a broad spectrum of structurally and mechanistically unrelated drugs. MDR severely hinders the effective treatment of cancer and is the major cause of chemotherapy failure. ATP-binding cassette (ABC) transporters are extensively expressed in various body tissues, and actively transport endogenous and exogenous substrates through biological membranes. Overexpression of ABC transporters is frequently observed in MDR cancer cells, which promotes efflux of chemotherapeutic drugs and reduces their intracellular accumulation. Increasing evidence suggests that ABC transporters regulate tumor immune microenvironment (TIME) by transporting various cytokines, thus controlling anti-tumor immunity and sensitivity to anticancer drugs. On the other hand, the expression of various ABC transporters is regulated by cytokines and other immune signaling molecules. Targeted inhibition of ABC transporter expression or function can enhance the efficacy of immune checkpoint inhibitors by promoting anticancer immune microenvironment. This review provides an update on the recent research progress in this field.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
2
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
3
|
Kozlowski M, Nazimek K, Nowak B, Filipczak-Bryniarska I, Bryniarski K. Analgesic adjuvants modulate morphine-induced immune effects in mice. Pharmacol Rep 2019; 71:573-582. [PMID: 31170658 DOI: 10.1016/j.pharep.2019.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Macrophages, involved in the pathogenesis of pain, express a variety of receptors enabling responsiveness to certain medications, including adjuvant analgesics (AAs), that are effective in neuropathic pain and include drugs not primarily indicated for pain treatment, such as anticonvulsants or antidepressants. Their analgesic effects are likely associated with immunomodulatory activity, that remain undefined. Thus, current research aimed at examining the impact of AAs on morphine-induced effects exerted on mouse immunity. METHODS Macrophages from mice treated with morphine with or without gabapentin, amitriptyline or venlafaxine, were either subjected to phagocytosis assay, cultured to evaluate the generation of cytokines, or were pulsed with either corpuscular antigen or hapten and transferred to naive recipients to induce humoral or cellular response, respectively. Active contact hypersensitivity was also elicited in drug-treated mice. RESULTS We observed that repeatedly administered morphine and AAs reduced antigen phagocytosis by macrophages. Further, amitriptyline with morphine enhanced basal secretion of cytokines by macrophages, and all drugs tended to decrease LPS-stimulated release of pro-inflammatory cytokines. Morphine and AAs impacted the expression of phagocytosis and antigen-presentation markers on macrophages, which led to the reduced ability of morphine-affected macrophages to induce B-cell secretion of specific antibodies, and the addition of AAs strengthened this effect. Finally, gabapentin and venlafaxine suppressed the contact hypersensitivity reaction, while amitriptyline seemed to have the opposite effect. CONCLUSIONS Our study demonstrated a significant anti-inflammatory activity of AAs across a broad spectrum of macrophage immune functions, which is likely critical to their analgesic activity supporting the beneficial effect of morphine.
Collapse
Affiliation(s)
- Michael Kozlowski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland; Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Iwona Filipczak-Bryniarska
- Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
4
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Differences in immunomodulatory properties between venlafaxine and paroxetine in patients with major depressive disorder. Psychoneuroendocrinology 2018; 87:108-118. [PMID: 29055264 DOI: 10.1016/j.psyneuen.2017.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/03/2017] [Accepted: 10/10/2017] [Indexed: 01/24/2023]
Abstract
Inflammatory processes play a crucial role in the pathophysiology of depression, and identifying the specific cytokines targeted by different antidepressants is important for personalized treatment. The aims of this study were to examine whether venlafaxine and paroxetine cause different immunomodulatory effects when used to treat patients with major depression and to clarify the relationships between plasma cytokine levels and the therapeutic effectiveness of these drugs. A total of 91 Han Chinese patients with major depression completed the 8-week paroxetine or venlafaxine treatment and 90 healthy controls were recruited. A multiplex assay was used to measure cytokines levels in patients with major depression before and after an 8-week venlafaxine and paroxetine treatment. Cytokine levels were measured in healthy controls at the baseline. The 21-item Hamilton Depression Rating Scale was used to assess the changes in psychopathological symptoms from the baseline to the end point in each patient. Venlafaxine treatment caused greater decreases in the levels of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin 4 (IL-4), IL-5, IL-1β, and IL-8 than did paroxetine. Paroxetine treatment increased the levels of proinflammatory cytokines IFN-γ, TNF-α, and IL-6 and decreased Th2 cytokine levels. After paroxetine treatment, IL-6 levels increased more in the non-remitter group than in the remitter group. In the remitter group, IL-4 and IL-5 levels decreased to values seen in the healthy controls. After venlafaxine treatment in both the remitter and non-remitter groups, IL-1β levels decreased to values seen in the healthy controls. Our results suggest that venlafaxine and paroxetine have different immunomodulatory properties and that venlafaxine has greater anti-inflammatory effects than paroxetine.
Collapse
|
6
|
P-glycoprotein and drug resistance in systemic autoimmune diseases. Int J Mol Sci 2014; 15:4965-76. [PMID: 24658440 PMCID: PMC3975434 DOI: 10.3390/ijms15034965] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS), synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp) is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA) and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.
Collapse
|
7
|
Yu N, Liu H, Di Q. Modulation of Immunity and the Inflammatory Response: A New Target for Treating Drug-resistant Epilepsy. Curr Neuropharmacol 2013; 11:114-27. [PMID: 23814544 PMCID: PMC3580785 DOI: 10.2174/157015913804999540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/16/2012] [Accepted: 11/17/2012] [Indexed: 12/11/2022] Open
Abstract
Until recently, epilepsy medical therapy is usually limited to anti-epileptic drugs (AEDs). However, approximately 1/3 of epilepsy patients, described as drug-resistant epilepsy (DRE) patients, still suffer from continuous frequent seizures despite receiving adequate AEDs treatment of sufficient duration. More recently, with the remarkable progress of immunology, immunity and inflammation are considered to be key elements of the pathobiology of epilepsy. Activation of inflammatory processes in brain tissue has been observed in both experimental seizure animal models and epilepsy patients. Anti-inflammatory and immunotherapies also showed significant anticonvulsant properties both in clinical and in experimental settings. The above emerging evidence indicates that modulation of immunity and inflammatory processes could serve as novel specific targets to achieve potential anticonvulsant effects for the patients with epilepsy, especially DRE. Herein we review the recent evidence supporting the role of inflammation in the development and perpetuation of seizures, and also discuss the recent achievements in modulation of inflammation and immunotherapy applied to the treatment of epilepsy. Apart from medical therapy, we also discuss the influences of surgery, ketogenic diet, and electroconvulsive therapy on immunity and inflammation in DRE patients. Taken together, a promising perspective is suggested for future immunomodulatory therapies in the treatment of patients with DRE.
Collapse
Affiliation(s)
- Nian Yu
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
8
|
Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 2013; 23:171-85. [PMID: 22609317 DOI: 10.1016/j.euroneuro.2012.04.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | |
Collapse
|
9
|
Walker FR. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology 2012; 67:304-17. [PMID: 23085335 DOI: 10.1016/j.neuropharm.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 08/21/2012] [Accepted: 10/04/2012] [Indexed: 12/27/2022]
Abstract
The selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed pharmacological treatment for depression. Since their introduction many have considered the primary mechanism by which the SSRIs produced therapeutic improvement in depression is their effect on monoaminergic signalling. In recent years, however, the credibility of the monoamine theory and the therapeutic efficacy of these compounds in the treatment of depression has been extensively criticized. In the current review the legitimacy of these criticisms is critically examined, in many instances the evidence base used to support these criticisms is found to be weak. Nevertheless, the apparent 'failure' of the monoamine theory has been of benefit in motivating research into alternative mechanisms through which the SSRIs may act. Given research demonstrating that depressive symptoms are intimately linked with disturbances in pro-inflammatory signalling, perhaps the most promising discovery has been the realisation that SSRIs posses significant anti-inflammatory properties. These recent findings are discussed and contextualised with respect to the neurogenic, neurotrophic and gluatamatergic effects that these drugs also possess.
Collapse
Affiliation(s)
- Frederick Rohan Walker
- Laboratory of Affective Neuroscience and Neuroimmunology, School of Biomedical Sciences and Pharmacy, Priority Research Centre for Brain and Mental Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|