1
|
Shi W, Meng Q, Hu X, Cheng J, Shao Z, Yang Y, Ao Y. Using a Xenogeneic Acellular Dermal Matrix Membrane to Enhance the Reparability of Bone Marrow Mesenchymal Stem Cells for Cartilage Injury. Bioengineering (Basel) 2023; 10:916. [PMID: 37627801 PMCID: PMC10451227 DOI: 10.3390/bioengineering10080916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Due to its avascular organization and low mitotic ability, articular cartilage possesses limited intrinsic regenerative capabilities. The aim of this study is to achieve one-step cartilage repair in situ via combining bone marrow stem cells (BMSCs) with a xenogeneic Acellular dermal matrix (ADM) membrane. The ADM membranes were harvested from Sprague-Dawley (SD) rats through standard decellularization procedures. The characterization of the scaffolds was measured, including the morphology and physical properties of the ADM membrane. The in vitro experiments included the cell distribution, chondrogenic matrix quantification, and viability evaluation of the scaffolds. Adult male New Zealand white rabbits were used for the in vivo evaluation. Isolated microfracture was performed in the control (MF group) in the left knee and the tested ADM group was included as an experimental group when an ADM scaffold was implanted through matching with the defect after microfracture in the right knee. At 6, 12, and 24 weeks post-surgery, the rabbits were sacrificed for further research. The ADM could adsorb water and had excellent porosity. The bone marrow stem cells (BMSCs) grew well when seeded on the ADM scaffold, demonstrating a characteristic spindle-shaped morphology. The ADM group exhibited an excellent proliferative capacity as well as the cartilaginous matrix and collagen production of the BMSCs. In the rabbit model, the ADM group showed earlier filling, more hyaline-like neo-tissue formation, and better interfacial integration between the defects and normal cartilage compared with the microfracture (MF) group at 6, 12, and 24 weeks post-surgery. In addition, neither intra-articular inflammation nor a rejection reaction was observed after the implantation of the ADM scaffold. This study provides a promising biomaterial-based strategy for cartilage repair and is worth further investigation in large animal models.
Collapse
Affiliation(s)
- Weili Shi
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuping Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Kameishi S, Dunn CM, Oka M, Kim K, Cho YK, Song SU, Grainger DW, Okano T. Rapid and effective preparation of clonal bone marrow-derived mesenchymal stem/stromal cell sheets to reduce renal fibrosis. Sci Rep 2023; 13:4421. [PMID: 36932137 PMCID: PMC10023793 DOI: 10.1038/s41598-023-31437-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Allogeneic "off-the-shelf" mesenchymal stem/stromal cell (MSC) therapy requires scalable, quality-controlled cell manufacturing and distribution systems to provide clinical-grade products using cryogenic cell banking. However, previous studies report impaired cell function associated with administering freeze-thawed MSCs as single cell suspensions, potentially compromising reliable therapeutic efficacy. Using long-term culture-adapted clinical-grade clonal human bone marrow MSCs (cBMSCs) in this study, we engineered cBMSC sheets in 24 h to provide rapid preparation. We then sought to determine the influence of cBMSC freeze-thawing on both in vitro production of pro-regenerative factors and in vivo ability to reduce renal fibrosis in a rat model compared to freshly harvested cBMSCs. Sheets from freeze-thawed cBMSCs sheets exhibited comparable in vitro protein production and gene expression of pro-regenerative factors [e.g., hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin 10 (IL-10)] to freshly harvested cBMSC sheets. Additionally, freeze-thawed cBMSC sheets successfully suppressed renal fibrosis in vivo in an established rat ischemia-reperfusion injury model. Despite previous studies reporting that freeze-thawed MSCs exhibit impaired cell functions compared to fresh MSC single cell suspensions, cell sheets engineered from freeze-thawed cBMSCs do not exhibit impaired cell functions, supporting critical steps toward future clinical translation of cBMSC-based kidney disease treatment.
Collapse
Affiliation(s)
- Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA.
| | - Celia M Dunn
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Masatoshi Oka
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
| | | | - Sun U Song
- SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA.
- Institute for Advanced Biomedical Sciences, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Oka M, Kameishi S, Cho YK, Song SU, Grainger DW, Okano T. Clinically Relevant Mesenchymal Stem/Stromal Cell Sheet Transplantation Method for Kidney Disease. Tissue Eng Part C Methods 2023; 29:54-62. [PMID: 36719774 DOI: 10.1089/ten.tec.2022.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) is the irreversible loss of nephron function, leading to a build-up of toxins, prolonged inflammation, and ultimately fibrosis. Currently, no effective therapies exist to treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cell (MSC) transplantation is a promising strategy to treat kidney diseases, and multiple clinical trials are currently ongoing. We previously demonstrated that rat bone marrow-derived MSC (BMSC) sheets transplanted onto surgically decapsulated kidney exert therapeutic effects that suppressed renal fibrosis progression based on enhanced vascularization. However, there are clinical concerns about kidney decapsulation such as impaired glomerular filtration rate and Na+ ion and H2O excretion, leading to kidney dysfunction. Therefore, for transitioning from basic research to translational research using cell sheet therapy for kidney disease, it is essential to develop a new cell sheet transplantation strategy without kidney decapsulation. Significantly, we employed cell sheets engineered from clinical-grade human clonal BMSC (cBMSC) and transplanted these onto intact renal capsule to evaluate their therapeutic ability in the rat ischemia-reperfusion injury (IRI) model. Histological analysis 1-day postsurgery showed that cBMSC sheets engrafted well onto intact renal capsule. Interestingly, some grafted cBMSCs migrated into the renal parenchyma. At 1-3 days postsurgery (acute stage), grafted cBMSC sheets prevented tubular epithelial cell injury. At 28 days postsurgery (chronic phase), we observed that grafted cBMSC sheets suppressed renal fibrosis in the rat IRI model. Taken together, engineered cBMSC sheet transplantation onto intact renal capsule suppresses tubular epithelial cell injury and renal fibrosis, supporting further development as a possible clinically relevant strategy. Impact statement Chronic kidney disease (CKD) produces irreversible loss of nephron function, leading to toxemia, prolonged inflammation, and ultimately kidney fibrosis. Currently, no therapies exist to effectively treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cells (MSCs) are widely known to secret therapeutic paracrine factors, which is expected to provide a new effective therapy for unmet medical needs. However, unsatisfied MSC quality and administration methods to patients limit their therapeutic effects. In this study, we engineered clonal bone marrow-derived MSC sheets and established clinically relevant cell sheet transplantation strategy to treat renal fibrosis, which would improve MSC treatment for kidney disease.
Collapse
Affiliation(s)
- Masatoshi Oka
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA.,Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
| | - Yun-Kyoung Cho
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sun U Song
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,SCM Lifescience Co., Ltd., Republic of Korea
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Ye C, Chen J, Qu Y, Qi H, Wang Q, Yang Z, Wu A, Wang F, Li P. Naringin in the repair of knee cartilage injury via the TGF-β/ALK5/Smad2/3 signal transduction pathway combined with an acellular dermal matrix. J Orthop Translat 2022; 32:1-11. [PMID: 35591936 PMCID: PMC9072805 DOI: 10.1016/j.jot.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Preventive Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Qu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Qingfu Wang
- Orthopedics Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengxian Wang
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Corresponding author. Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Street, Beijing, 100700, China.
| |
Collapse
|
5
|
Ge D, O'Brien MJ, Savoie FH, Gimble JM, Wu X, Gilbert MH, Clark-Patterson GL, Schuster JD, Miller KS, Wang A, Myers L, You Z. Human adipose-derived stromal/stem cells expressing doublecortin improve cartilage repair in rabbits and monkeys. NPJ Regen Med 2021; 6:82. [PMID: 34848747 PMCID: PMC8633050 DOI: 10.1038/s41536-021-00192-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Localized cartilage lesions in early osteoarthritis and acute joint injuries are usually treated surgically to restore function and relieve pain. However, a persistent clinical challenge remains in how to repair the cartilage lesions. We expressed doublecortin (DCX) in human adipose-derived stromal/stem cells (hASCs) and engineered hASCs into cartilage tissues using an in vitro 96-well pellet culture system. The cartilage tissue constructs with and without DCX expression were implanted in the knee cartilage defects of rabbits (n = 42) and monkeys (n = 12). Cohorts of animals were euthanized at 6, 12, and 24 months after surgery to evaluate the cartilage repair outcomes. We found that DCX expression in hASCs increased expression of growth differentiation factor 5 (GDF5) and matrilin 2 in the engineered cartilage tissues. The cartilage tissues with DCX expression significantly enhanced cartilage repair as assessed macroscopically and histologically at 6, 12, and 24 months after implantation in the rabbits and 24 months after implantation in the monkeys, compared to the cartilage tissues without DCX expression. These findings suggest that hASCs expressing DCX may be engineered into cartilage tissues that can be used to treat localized cartilage lesions.
Collapse
Affiliation(s)
- Dongxia Ge
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael J O'Brien
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Felix H Savoie
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey M Gimble
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiying Wu
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | | | - Jason D Schuster
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Alun Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Leann Myers
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropic Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
6
|
Li W, Sheng K, Ran Y, Zhang J, Li B, Zhu Y, Chen J, He Q, Chen X, Wang J, Jiang T, Yu X, Ye Z. Transformation of acellular dermis matrix with dicalcium phosphate into 3D porous scaffold for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2071-2087. [PMID: 34266365 DOI: 10.1080/09205063.2021.1955817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Animal derived biomaterials have attracted much attentions in treating large size bone defect due to their excellent biocompatibility and potent bioactivities offered by the biomacromolecules and growth factors contained in these materials. Dermis-derived matrix (ADM) has been used as skin grafts and wound dressings for decades, however its application in bone tissue engineering has been largely limited as ADM possesses a dense structure which does not support bone tissue ingrowth. Recently, we have successfully fabricated porous scaffold structure using an ADM with the aid of micronization technique. When integrated with inorganic components such as calcium phosphate, ADM could be transformed to bone graft substitutes with desirable osteogenic properties. While purified and chemically cross-linked collagen has lost its natural structure, our ADM successfully preserved natural tropocollagen structure, as well as other bioactive components. A composite scaffold was fabricated by incorporating dicalcium phosphate (DCP) microparticles into ADM microfibers and freeze-dried to form a highly porous structure. Unlike conventional ADM materials, this scaffold possesses high porosity with interconnected pores. More importantly, our evaluation data demonstrated that it performed much more effective in treating critical bone defects in comparison with best commercial product on the market. In a head-to-head comparison with a commercial bone graft material Bongold®, the ADM/DCP scaffold showed superior osteogenic capacity by filling the defect with well-organized new bone tissue in a rabbit radius segmental defect model. Put together, our results exhibited a novel bone graft substitute was developed by circumventing processing barriers associated with natural ADM, which offers another novel bone graft substitute for bone regeneration.
Collapse
Affiliation(s)
- Weixu Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Kunkun Sheng
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Yongfeng Ran
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Jingyi Zhang
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Bo Li
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Yuqing Zhu
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Jiayu Chen
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Qianhong He
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Xin Chen
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Jianwei Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Tao Jiang
- Hangzhou Huamai Medical Device Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| |
Collapse
|
7
|
Dufour A, Lafont JE, Buffier M, Verset M, Cohendet A, Contamin H, Confais J, Sankar S, Rioult M, Perrier-Groult E, Mallein-Gerin F. Repair of full-thickness articular cartilage defects using IEIK13 self-assembling peptide hydrogel in a non-human primate model. Sci Rep 2021; 11:4560. [PMID: 33633122 PMCID: PMC7907267 DOI: 10.1038/s41598-021-83208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
Articular cartilage is built by chondrocytes which become less active with age. This declining function of the chondrocytes, together with the avascular nature of the cartilage, impedes the spontaneous healing of chondral injuries. These lesions can progress to more serious degenerative articular conditions as in the case of osteoarthritis. As no efficient cure for cartilage lesions exist yet, cartilage tissue engineering has emerged as a promising method aiming at repairing joint defects and restoring articular function. In the present work, we investigated if a new self-assembling peptide (referred as IEIK13), combined with articular chondrocytes treated with a chondrogenic cocktail (BMP-2, insulin and T3, designated BIT) could be efficient to restore full-thickness cartilage defects induced in the femoral condyles of a non-human primate model, the cynomolgus monkey. First, in vitro molecular studies indicated that IEIK13 was efficient to support production of cartilage by monkey articular chondrocytes treated with BIT. In vivo, cartilage implant integration was monitored non-invasively by contrast-enhanced micro-computed tomography, and then by post-mortem histological analysis and immunohistochemical staining of the condyles collected 3 months post-implantation. Our results revealed that the full-thickness cartilage injuries treated with either IEIK13 implants loaded with or devoid of chondrocytes showed similar cartilage-characteristic regeneration. This pilot study demonstrates that IEIK13 can be used as a valuable scaffold to support the in vitro activity of articular chondrocytes and the repair of articular cartilage defects, when implanted alone or with chondrocytes.
Collapse
Affiliation(s)
- Alexandre Dufour
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Jérôme E Lafont
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | - Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France.
| |
Collapse
|
8
|
Wang Y, Xu Y, Zhou G, Liu Y, Cao Y. Biological Evaluation of Acellular Cartilaginous and Dermal Matrixes as Tissue Engineering Scaffolds for Cartilage Regeneration. Front Cell Dev Biol 2021; 8:624337. [PMID: 33505975 PMCID: PMC7829663 DOI: 10.3389/fcell.2020.624337] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
An acellular matrix (AM) as a kind of natural biomaterial is gaining increasing attention in tissue engineering applications. An acellular cartilaginous matrix (ACM) and acellular dermal matrix (ADM) are two kinds of the most widely used AMs in cartilage tissue engineering. However, there is still debate over which of these AMs achieves optimal cartilage regeneration, especially in immunocompetent large animals. In the current study, we fabricated porous ADM and ACM scaffolds by a freeze-drying method and confirmed that ADM had a larger pore size than ACM. By recolonization with goat auricular chondrocytes and in vitro culture, ADM scaffolds exhibited a higher cell adhesion rate, more homogeneous chondrocyte distribution, and neocartilage formation compared with ACM. Additionally, quantitative polymerase chain reaction (qPCR) indicated that expression of cartilage-related genes, including ACAN, COLIIA1, and SOX9, was significantly higher in the ADM group than the ACM group. Furthermore, after subcutaneous implantation in a goat, histological evaluation showed that ADM achieved more stable and matured cartilage compared with ACM, which was confirmed by quantitative data including the wet weight, volume, and contents of DNA, GAG, total collagen, and collagen II. Additionally, immunological assessment suggested that ADM evoked a low immune response compared with ACM as evidenced by qPCR and immunohistochemical analyses of CD3 and CD68, and TUNEL. Collectively, our results indicate that ADM is a more suitable AM for cartilage regeneration, which can be used for cartilage regeneration in immunocompetent large animals.
Collapse
Affiliation(s)
- Yahui Wang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Yong Xu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Cao
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Engineered cartilage utilizing fetal cartilage-derived progenitor cells for cartilage repair. Sci Rep 2020; 10:5722. [PMID: 32235934 PMCID: PMC7109068 DOI: 10.1038/s41598-020-62580-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/29/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to develop a fetal cartilage-derived progenitor cell (FCPC) based cartilage gel through self-assembly for cartilage repair surgery, with clinically useful properties including adhesiveness, plasticity, and continued chondrogenic remodeling after transplantation. Characterization of the gels according to in vitro self-assembly period resulted in increased chondrogenic features over time. Adhesion strength of the cartilage gels were significantly higher compared to alginate gel, with the 2-wk group showing a near 20-fold higher strength (1.8 ± 0.15 kPa vs. 0.09 ± 0.01 kPa, p < 0.001). The in vivo remodeling process analysis of the 2 wk cultured gels showed increased cartilage repair characteristics and stiffness over time, with higher integration-failure stress compared to osteochondral autograft controls at 4 weeks (p < 0.01). In the nonhuman primate investigation, cartilage repair scores were significantly better in the gel group compared to defects alone after 24 weeks (p < 0.001). Cell distribution analysis at 24 weeks showed that human cells remained within the transplanted defects only. A self-assembled, FCPC-based cartilage gel showed chondrogenic repair potential as well as adhesive properties, beneficial for cartilage repair.
Collapse
|
10
|
Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X. Animal Models of Osteochondral Defect for Testing Biomaterials. Biochem Res Int 2020; 2020:9659412. [PMID: 32082625 PMCID: PMC7007938 DOI: 10.1155/2020/9659412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
The treatment of osteochondral defects (OCD) remains a great challenge in orthopaedics. Tissue engineering holds a good promise for regeneration of OCD. In the light of tissue engineering, it is critical to establish an appropriate animal model to evaluate the degradability, biocompatibility, and interaction of implanted biomaterials with host bone/cartilage tissues for OCD repair in vivo. Currently, model animals that are commonly deployed to create osteochondral lesions range from rats, rabbits, dogs, pigs, goats, and sheep horses to nonhuman primates. It is essential to understand the advantages and disadvantages of each animal model in terms of the accuracy and effectiveness of the experiment. Therefore, this review aims to introduce the common animal models of OCD for testing biomaterials and to discuss their applications in translational research. In addition, we have reviewed surgical protocols for establishing OCD models and biomaterials that promote osteochondral regeneration. For small animals, the non-load-bearing region such as the groove of femoral condyle is commonly chosen for testing degradation, biocompatibility, and interaction of implanted biomaterials with host tissues. For large animals, closer to clinical application, the load-bearing region (medial femoral condyle) is chosen for testing the durability and healing outcome of biomaterials. This review provides an important reference for selecting a suitable animal model for the development of new strategies for osteochondral regeneration.
Collapse
Affiliation(s)
- Xiangbo Meng
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Reihane Ziadlou
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanyan Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Nie H, Kubrova E, Wu T, Denbeigh JM, Hunt C, Dietz AB, Smith J, Qu W, van Wijnen AJ. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11:1218-1227. [PMID: 30784215 DOI: 10.1002/pmrj.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the biologic effects of lidocaine on the viability, proliferation, and function of human adipose tissue-derived mesenchymal stromal/stem cells (MSCs) in vitro. METHODS Adipose-derived MSCs from three donors were exposed to lidocaine at various dilutions (2 mg/mL to 8 mg/mL) and exposure times (0.5 to 4 hours). Cell number and viability, mitochondrial activity, and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) were analyzed at 0 (immediate effects) or 24 and 48 hours (recovery effects) after treatment with lidocaine. RESULTS Trypan blue staining showed that increasing concentrations of lidocaine decreased the number of observable viable cells. 3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium (MTS) assays revealed a concentration- and time- dependent decline of mitochondrial activity and proliferative ability. Gene expression analysis by RT-qPCR revealed that adipose-derived MSCs exposed to lidocaine express robust levels of stress response/cytoprotective genes. However, higher concentrations of lidocaine caused a significant downregulation of these genes. No significant differences were observed in expression of extracellular matrix (ECM) markers COL1A1 and DCN except for COL3A1 (P < .05). Levels of messenger RNA (mRNA) for proliferation markers (CCNB2, HIST2H4A, P < .001) and MKI67 (P < .001) increased at 24 and 48 hours. Expression levels of several transcription factors- including SP1, PRRX1, and ATF1-were modulated in the same manner. MSC surface markers CD44 and CD105 demonstrated decreased expression immediately after treatment, but at 24 and 48 hours postexposure, the MSC markers showed no significant difference among groups. CONCLUSION Lidocaine is toxic to MSCs in a dose- and time- dependent manner. MSC exposure to high (4-8 mg/mL) concentrations of lidocaine for prolonged periods can affect their biologic functions. Although the exposure time in vivo is short, it is essential to choose safe concentrations when applying lidocaine along with MSCs to avoid compromising the viability and potency of the stem cell therapy.
Collapse
Affiliation(s)
- Hai Nie
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Eva Kubrova
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Tao Wu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Janet M Denbeigh
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Christine Hunt
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jay Smith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Wenchun Qu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Stem Cell Rev Rep 2017; 13:50-67. [PMID: 27826794 DOI: 10.1007/s12015-016-9699-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some decellularized musculoskeletal extracellular matrices (ECM)s derived from tissues such as bone, tendon and fibrocartilaginous meniscus have already been clinical use for tissue reconstruction. Repair of articular cartilage with its unique zonal ECM architecture and composition is still an unsolved problem, and the question is whether allogenic or xenogeneic decellularized cartilage ECM could serve as a biomimetic scaffold for this purpose.Hence, this survey outlines the present state of preparing decellularized cartilage ECM-derived scaffolds or composites for reconstruction of different cartilage types and of reseeding it particularly with mesenchymal stromal cells (MSCs).The preparation of natural decellularized cartilage ECM scaffolds hampers from the high density of the cartilage ECM and lacking interconnectivity of the rather small natural pores within it: the chondrocytes lacunae. Nevertheless, the reseeding of decellularized ECM scaffolds before implantation provided superior results compared with simply implanting cell-free constructs in several other tissues, but cartilage recellularization remains still challenging. Induced by cartilage ECM-derived scaffolds MSCs underwent chondrogenesis.Major problems to be addressed for the application of cell-free cartilage were discussed such as to maintain ECM structure, natural chemistry, biomechanics and to achieve a homogenous and stable cell recolonization, promote chondrogenic and prevent terminal differentiation (hypertrophy) and induce the deposition of a novel functional ECM. Some promising approaches were proposed including further processing of the decellularized ECM before recellularization of the ECM with MSCs, co-culturing of MSCs with chondrocytes and establishing bioreactor culture e.g. with mechanostimulation, flow perfusion pressure and lowered oxygen tension. Graphical Abstract Synopsis of tissue engineering approaches based on cartilage-derived ECM.
Collapse
|
13
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
14
|
Zhou A, Li M, He B, Feng W, Huang F, Xu B, Dunker AK, Balch C, Li B, Liu Y, Wang Y. Lipopolysaccharide treatment induces genome-wide pre-mRNA splicing pattern changes in mouse bone marrow stromal stem cells. BMC Genomics 2016; 17 Suppl 7:509. [PMID: 27557078 PMCID: PMC5001229 DOI: 10.1186/s12864-016-2898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) is a gram-negative bacterial antigen that triggers a series of cellular responses. LPS pre-conditioning was previously shown to improve the therapeutic efficacy of bone marrow stromal cells/bone-marrow derived mesenchymal stem cells (BMSCs) for repairing ischemic, injured tissue. RESULTS In this study, we systematically evaluated the effects of LPS treatment on genome-wide splicing pattern changes in mouse BMSCs by comparing transcriptome sequencing data from control vs. LPS-treated samples, revealing 197 exons whose BMSC splicing patterns were altered by LPS. Functional analysis of these alternatively spliced genes demonstrated significant enrichment of phosphoproteins, zinc finger proteins, and proteins undergoing acetylation. Additional bioinformatics analysis strongly suggest that LPS-induced alternatively spliced exons could have major effects on protein functions by disrupting key protein functional domains, protein-protein interactions, and post-translational modifications. CONCLUSION Although it is still to be determined whether such proteome modifications improve BMSC therapeutic efficacy, our comprehensive splicing characterizations provide greater understanding of the intracellular mechanisms that underlie the therapeutic potential of BMSCs.
Collapse
Affiliation(s)
- Ao Zhou
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Bioinformatics Program, Indiana University School of Informatics, Indianapolis, IN, 46202, USA
| | - Meng Li
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Bo He
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Weixing Feng
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Fei Huang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bing Xu
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Curt Balch
- Bioscience Advising, Indianapolis, IN, 46227, USA
| | - Baiyan Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11:19. [PMID: 26837951 PMCID: PMC4738796 DOI: 10.1186/s13018-016-0346-5] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.
Collapse
Affiliation(s)
- Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA. .,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA. .,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Sridharan B, Sharma B, Detamore MS. A Road Map to Commercialization of Cartilage Therapy in the United States of America. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:15-33. [PMID: 26192161 DOI: 10.1089/ten.teb.2015.0147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite numerous efforts in cartilage regeneration, few products see the light of clinical translation as the commercialization process is opaque, financially demanding, and requires collaboration with people of varied skill sets. The aim of this review is to introduce, to an academic audience, the different paradigms involved in the commercialization of cartilage regeneration technology, elucidate the different hurdles associated with the use of cells and materials in developing new technologies, discuss potential commercialization strategies, and inform the reader about the current trends observed in both the clinical and laboratory setting for establishing clinical trials. Although there are review articles on articular cartilage tissue engineering, independent reports provided by the Food and Drug Administration, and separate review articles on animal models, this is the first review that encompasses all of these facets and is presented in a format favorable to the academic investigator interested in clinical translation from bench to bedside.
Collapse
Affiliation(s)
| | - Blanka Sharma
- 2 Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| | - Michael S Detamore
- 1 Bioengineering Program, University of Kansas , Lawrence, Kansas.,3 Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas
| |
Collapse
|
17
|
Abstract
Among the surgical options for large full-thickness chondral injuries, cell-based therapy has been practiced and its satisfactory outcomes have been reported. One area that appears promising is cell-based therapies utilizing stem cells. Various tissues within the human body contain mesenchymal stem cells (MSCs) from where these can be harvested. These include bone marrow, adipose, synovium, peripheral blood, and umbilical cord. In this article, both preclinical animal studies and clinical studies dealing with the use of MSCs for cartilage repair of the knee are reviewed. Majority of the clinical papers have shown promising results; however, there are a limited number of studies of high evidence level. Clinical significance of the stem cell therapy as compared to other surgical options as well as optimization of the procedure in terms of cell type and delivery method is still to be determined.
Collapse
Affiliation(s)
- Shinichi Yoshiya
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Aman Dhawan
- Sports Medicine, Penn State Hershey Bone and Joint Institute, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
18
|
Abstract
Osteoarthritis (OA) is unquestionably one of the most important chronic health issues in humans, affecting millions of individuals and costing billions of dollars annually. Despite widespread awareness of this disease and its devastating impact, the pathogenesis of early OA is not completely understood, hampering the development of effective tools for early diagnosis and disease-modifying therapeutics. Most human tissue available for study is obtained at the time of joint replacement, when OA lesions are end stage and little can be concluded about the factors that played a role in disease development. To overcome this limitation, over the past 50 years, numerous induced and spontaneous animal models have been utilized to study disease onset and progression, as well as to test novel therapeutic interventions. Reflecting the heterogeneity of OA itself, no single "gold standard" animal model for OA exists; thus, a challenge for researchers lies in selecting the most appropriate model to answer a particular scientific question of interest. This review provides general considerations for model selection, as well as important features of species such as mouse, rat, guinea pig, sheep, goat, and horse, which researchers should be mindful of when choosing the "best" animal model for their intended purpose. Special consideration is given to key variations in pathology among species as well as recommended guidelines for reporting the histologic features of each model.
Collapse
Affiliation(s)
- A M McCoy
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
19
|
Wang Q, Jin Y, Deng X, Liu H, Pang H, Shi P, Zhan Z. Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials 2015; 53:659-68. [PMID: 25890761 DOI: 10.1016/j.biomaterials.2015.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Direct intra-skin injection of mesenchymal stem cells (MSCs) and the use of biomaterial scaffolds for grafts are both promising approaches of skin wound repair, however they still cannot generate skin that completely resembles the natural skin structures. In this study, we combined these two approaches by using acellular dermal matrix (ADM) recellularized with MSCs to repair cutaneous wounds in a murine model and two-photon fluorescence (TPF) microscopy and second-harmonic generation (SHG) microscopy to assess the effects of this therapy on wound healing. Bone marrow-derived mesenchymal stem cells (BM-MSCs) were tagged with GFP and seeded into ADM (ADM-MSC) via MSC and ADM co-culture. ADM-MSC, ADM or saline was applied to murine excisional skin wounds and wound-healing was evaluated by histological examination on days 7, 14, 21 and TFP microscopy on days 1, 3, 5 and 21 post-treatment. ADM-MSC promoted healing significantly more than treatment with ADM or saline alone, as it led to substantial neovascularization and complete skin appendage regeneration. Furthermore, the SHG microscopic imaging technique proved to be a useful tool for monitoring changes in the collagen network at the wound site during the healing process and assessing the effects of different therapies.
Collapse
Affiliation(s)
- Qiannan Wang
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Ying Jin
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China; Research Resources Center, South China Normal University, Guangzhou, Guangdong, China.
| | - Hanping Liu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Hongwen Pang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Panpan Shi
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zhigang Zhan
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|