1
|
M Morris N, A Blee J, Hauert S. Global parameter optimisation and sensitivity analysis of antivenom pharmacokinetics and pharmacodynamics. Toxicon 2023; 232:107206. [PMID: 37356552 DOI: 10.1016/j.toxicon.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In recent years it has become possible to design snakebite antivenoms with diverse pharmacokinetic properties. Owing to the pharmacokinetic variability of venoms, the choice of antivenom scaffold may influence a treatment's neutralisation coverage. Computation offers a useful medium through which to assess the pharmacokinetics and pharmacodynamics of envenomation-treatment systems, as antivenoms with identical neutralising capacities can be simulated. In this study, we simulate envenomation and treatment with a variety of antivenoms, to define the properties of effective antivenoms. Systemic envenomation and treatment were described using a two-compartment pharmacokinetic model. Treatment of Naja sumatrana and Cryptelytrops purpureomaculatus envenomation was simulated with a set of 200,000 theoretical antivenoms across 10 treatment time delays. These two venoms are well-characterised and have differing pharmacokinetic properties. The theoretical antivenom set varied across molecular weight, dose, kon, koff, and valency. The best and worst treatments were identified using an area under the curve metric, and a global sensitivity analysis was performed to quantify the influence of the input parameters on treatment outcome. The simulations show that scaffolds of diverse molecular formats can be effective. Molecular weight and valency have a negligible direct impact on treatment outcome, however low molecular weight scaffolds offer more flexibility across the other design parameters, particularly when treatment is delayed. The simulations show kon to primarily mediate treatment efficacy, with rates above 105 M-1s-1 required for the most effective treatments. koff has the greatest impact on the performance of less effective scaffolds. While the same scaffold preferences for improved treatment are seen for both model snakes, the parameter bounds for C. purpureomaculatus envenomation are more constrained. This paper establishes a computational framework for the optimisation of antivenom design.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
2
|
Morris NM, Blee JA, Hauert S. Developing a computational pharmacokinetic model of systemic snakebite envenomation and antivenom treatment. Toxicon 2022; 215:77-90. [PMID: 35716719 DOI: 10.1016/j.toxicon.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Snakebite envenomation is responsible for over 100,000 deaths and 400,000 cases of disability annually, most of which are preventable through access to safe and effective antivenoms. Snake venom toxins span a wide molecular weight range, influencing their absorption, distribution, and elimination within the body. In recent years, a range of scaffolds have been applied to antivenom development. These scaffolds similarly span a wide molecular weight range and subsequently display diverse pharmacokinetic behaviours. Computational simulations represent a powerful tool to explore the interplay between these varied antivenom scaffolds and venoms, to assess whether a pharmacokinetically optimal antivenom exists. The purpose of this study was to establish a computational model of systemic snakebite envenomation and treatment, for the quantitative assessment and comparison of conventional and next-generation antivenoms. A two-compartment mathematical model of envenomation and treatment was defined and the system was parameterised using existing data from rabbits. Elimination and biodistribution parameters were regressed against molecular weight to predict the dynamics of IgG, F(ab')2, Fab, scFv, and nanobody antivenoms, spanning a size range of 15-150 kDa. As a case study, intramuscular envenomation by Naja sumatrana (equatorial spitting cobra) and its treatment using Fab, F(ab')2, and IgG antivenoms was simulated. Variable venom dose tests were applied to visualise effective antivenom dose levels. Comparisons to existing antivenoms and experimental rescue studies highlight the large dose reductions that could result from recombinant antivenom use. This study represents the first comparative in silico model of snakebite envenomation and treatment.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
3
|
Sanhajariya S, Duffull SB, Isbister GK. Population pharmacokinetics of Pseudechis porphyriacus (red-bellied black snake) venom in snakebite patients. Clin Toxicol (Phila) 2021; 59:956-962. [PMID: 33832399 DOI: 10.1080/15563650.2021.1896731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Understanding the time course of venom exposure in snakebite patients is important for the optimisation of treatment including antivenom dose and timing. We aimed to investigate the pharmacokinetics of red-bellied black snake (RBBS; Pseudechis porphyriacus) venom in envenomed patients. METHODS Timed venom concentration data were obtained from patients with RBBS envenomation recruited to the Australian Snakebite Project (ASP), including demographics and antivenom treatment. Venom concentrations were measured using an enzyme immunoassay. Data were modelled using NONMEM version 7.3. Uncertainty in venom "dose" was accounted for by arbitrarily fixing the average amount to 1 mg and incorporating between-subject variability on relative bioavailability. A scale parameter for venom clearance was implemented to account for the rapid venom clearance following antivenom dosing. A sensitivity analysis was performed to determine the magnitude of venom clearance amplification. RESULTS There were 457 venom concentrations in 114 patients (median age 41, 2-90 y; 80 male). Antivenom was administered to 54 patients a median of 4.2 h post-bite (0.67 to 32 h). A one-compartment model with first-order absorption and elimination provided the best description of the data. The estimated clearance and volume of distribution were 5.21 L/h and 39.9 L, respectively. The calculated elimination half-life of P. porphyriacus venom from the final pharmacokinetic model was 5.35 ± 0.36 h. The variability in the relative dose of injected venom was 140%. Antivenom administration increased venom clearance by 40-fold. Ten patients showed evidence of a double peak in the absorption profile. CONCLUSION The information on the exposure time of venom in the body following envenomation will help improve treatment and the timing of antivenom.
Collapse
Affiliation(s)
- Suchaya Sanhajariya
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia.,Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Stephen B Duffull
- Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
| |
Collapse
|
4
|
Neri-Castro E, Bénard-Valle M, Paniagua D, V. Boyer L, D. Possani L, López-Casillas F, Olvera A, Romero C, Zamudio F, Alagón A. Neotropical Rattlesnake ( Crotalus simus) Venom Pharmacokinetics in Lymph and Blood Using an Ovine Model. Toxins (Basel) 2020; 12:toxins12070455. [PMID: 32708875 PMCID: PMC7405010 DOI: 10.3390/toxins12070455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
The most abundant protein families in viper venoms are Snake Venom Metalloproteases (SVMPs), Snake Venom Serine Proteases (SVSPs) and Phospholipases (PLA2s). These are primarily responsible for the pathophysiology caused by the bite of pit-vipers; however, there are few studies that analyze the pharmacokinetics (PK) of whole venom (WV) and its protein families. We studied the pathophysiology, PK profile and differential absorption of representative toxins from venom of Neotropical Rattlesnake (Crotalus simus) in a large animal model (ovine). Toxins studied included crotoxin (the main lethal component), which causes moderate to severe neurotoxicity; SVSPs, which deplete fibrinogen; and SVMPs, which cause local tissue damage and local and systemic hemorrhage. We found that Whole Venom (WV) was highly bioavailable (86%) 60 h following intramuscular (IM) injection, and extrapolation suggests that bioavailability may be as high as 92%. PK profiles of individual toxins were consistent with their physicochemical properties and expected clinical effects. Lymph cannulated animals absorbed 1.9% of WV through lymph during the first 12 h. Crotoxin was minimally detectable in serum after intravenous (IV) injection; however, following IM injection it was detected in lymph but not in blood. This suggests that crotoxin is quickly released from the blood toward its tissue targets.
Collapse
Affiliation(s)
- Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (M.B.-V.); (L.D.P.); (A.O.); (F.Z.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio B Primer Piso, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (M.B.-V.); (L.D.P.); (A.O.); (F.Z.)
| | - Dayanira Paniagua
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico;
| | - Leslie V. Boyer
- Venom Immunochemistry, Pharmacology, and Emergency Response (VIPER) Institute, University of Arizona,1501 N. Campbell Avenue, Tucson, AZ 85724, USA;
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (M.B.-V.); (L.D.P.); (A.O.); (F.Z.)
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Alejandro Olvera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (M.B.-V.); (L.D.P.); (A.O.); (F.Z.)
| | - Camilo Romero
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Amecameca de Juárez 56900, Mexico;
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (M.B.-V.); (L.D.P.); (A.O.); (F.Z.)
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (M.B.-V.); (L.D.P.); (A.O.); (F.Z.)
- Correspondence:
| |
Collapse
|
5
|
The Influence of the Different Disposition Characteristics of Snake Toxins on the Pharmacokinetics of Snake Venom. Toxins (Basel) 2020; 12:toxins12030188. [PMID: 32188075 PMCID: PMC7150903 DOI: 10.3390/toxins12030188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/04/2022] Open
Abstract
Snake venom is comprised of a combination of different proteins and peptides with a wide range of molecular weights and different disposition processes inherent to each compound. This causes venom to have a complex exposure profile. Our study investigates 1) how each molecular weight fraction (toxin) of venom contributes to the overall time course of the snake venom, and 2) the ability to determine toxin profiles based on the profile of the overall venom only. We undertook an in silico simulation and modelling study. Sixteen variations of venom, comprising of two to nine toxins with different molecular weights were investigated. The pharmacokinetic parameters (i.e., clearance, CL, and volume of distribution, V) of each toxin were generated based on a log-linear relationship with molecular weight. The concentration–time data of each toxin were simulated for 100 virtual patients using MATLAB and the total concentration–time data of each toxin were modelled using NONMEM. We found that the data of sixteen mixtures were best described by either two- or three-compartment models, despite the venom being made up of more than three different toxins. This suggests that it is generally not possible to determine individual toxin profiles based on measurements of total venom concentrations only.
Collapse
|
6
|
Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruíz L, Salazar J, Hidalgo-Martínez P, Diez H. Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura. UNIVERSITAS MÉDICA 2019. [DOI: 10.11144/javeriana.umed61-1.anti] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos
Collapse
|
7
|
Pharmacokinetics of Snake Venom. Toxins (Basel) 2018; 10:toxins10020073. [PMID: 29414889 PMCID: PMC5848174 DOI: 10.3390/toxins10020073] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/01/2022] Open
Abstract
Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.
Collapse
|
8
|
Nielsen VG, Sánchez EE, Redford DT. Characterization of the Rabbit as an In Vitro and In Vivo Model to Assess the Effects of Fibrinogenolytic Activity of Snake Venom on Coagulation. Basic Clin Pharmacol Toxicol 2017; 122:157-164. [PMID: 28696521 DOI: 10.1111/bcpt.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
Several in vitro investigations have demonstrated that anticoagulant effects of fibrinogenolytic snake venom metalloproteinases have been abrogated in human plasma by modifying fibrinogen with iron (Fe) and carbon monoxide (CO) to prevent catalysis or by directly inhibiting these enzymes with CO. To translate these findings, we chose to assess the rabbit as a model of envenomation with Crotalus atrox venom. It was determined with thrombelastography that 15 times the concentration of venom noted to compromise coagulation in plasma in vitro was required to cause coagulopathy in vivo, likely secondary to venom binding to blood cells and being cleared from the circulation rapidly. Unlike human plasma, rabbit plasma pre-treated with Fe/CO was not protected from fibrinogenolysis by venom. Consequently, the administration of purified human fibrinogen (with or without Fe/CO) would be required before venom administration to rabbits. Of greater interest, venom exposed to CO had complete loss of fibrinogenolytic effect in rabbit plasma and partial loss of activity in whole blood, indicative of unbinding of CO from venom and binding to haemoglobin. Thus, venom exposed to CO could remain partially or completely inhibited in whole blood long enough for clearance from the circulation, allowing rabbits to be a useful model to test the efficacy of regional CO administration to the bite site. Future investigations are planned to test these novel approaches to attenuate venom-mediated coagulopathy in the rabbit.
Collapse
Affiliation(s)
- Vance G Nielsen
- The Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center and the Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Daniel T Redford
- The Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
9
|
Yap MKK, Tan NH, Sim SM, Fung SY, Tan CH. The Effect of a Polyvalent Antivenom on the Serum Venom Antigen Levels of Naja sputatrix (Javan Spitting Cobra) Venom in Experimentally Envenomed Rabbits. Basic Clin Pharmacol Toxicol 2015; 117:274-9. [PMID: 25819552 DOI: 10.1111/bcpt.12398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence.
Collapse
Affiliation(s)
- Michelle Khai Khun Yap
- CENAR and Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- CENAR and Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- CENAR and Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|