1
|
He T, Pu J, Ge H, Liu T, Lv X, Zhang Y, Cao J, Yu H, Lu Z, Du F. Elevated circulating LncRNA NORAD fosters endothelial cell growth and averts ferroptosis by modulating the miR-106a/CCND1 axis in CAD patients. Sci Rep 2024; 14:24223. [PMID: 39414920 PMCID: PMC11484692 DOI: 10.1038/s41598-024-76243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases, characterized by endothelial dysfunction and lipid accumulation. Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell behavior. This study aimed to investigate the role of lncRNA NORAD in endothelial cell proliferation and as a potential therapeutic target for atherosclerosis. A total of 75 CAD patients and 76 controls were recruited, and plasma NORAD levels were measured using qRT-PCR. HUVECs were transfected with si-NORAD to evaluate its effects on cell cycle, proliferation, migration, and apoptosis. Plasma NORAD levels were significantly elevated in CAD patients. The NORAD-miRNA-mRNA ceRNA regulatory network was constructed based on GEO database, and G1/S-specific cyclin-D1 (CCND1) was identified as one of the hub factors. NORAD deficiency suppressed cell migration and induced G1 cell cycle arrest in HUVECs by downregulating CCND1 in vitro. NORAD upregulated CCND1 in HUVECs via sponging miR-106a that inhibited cell migration. The dual-luciferase assay confirmed the direct targeting of miR-106a by NORAD, and overexpression of miR-106a inhibited HUVEC proliferation and migration. Si-NORAD transfection resulted in induced early apoptosis, increased intracellular ROS levels, decreased GSH levels, and reduced mitochondrial membrane potential. Additionally, si-NORAD decreased the expression of GPX4, FTH1, KEAP1, NCOA4, and Nrf2, while increasing Xct levels, confirming the involvement of ferroptosis. Our findings reveal that NORAD plays a critical role in endothelial cell proliferation, migration, and apoptosis, and its silencing induces ferroptosis. The regulatory network involving NORAD, miR-106a, and their target genes provides a potential therapeutic avenue for atherosclerosis.
Collapse
Affiliation(s)
- Tao He
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - Junxing Pu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Haijing Ge
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - Tianli Liu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Xintong Lv
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Zhibing Lu
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China.
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China.
| |
Collapse
|
2
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Deng L, Cheng S, Li J, Xu X, Hao X, Fan Y, Mu S. Synthesis and biological evaluation of novel schisanhenol derivatives as potential hepatoprotective agents. Eur J Med Chem 2022; 227:113919. [PMID: 34688010 DOI: 10.1016/j.ejmech.2021.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
Twenty-one new schisanhenol derivatives were synthesized, and their hepatoprotective effects against liver injury induced by concanavalin A (Con A) were evaluated in vitro using an MTT assay. The data indicated that most derivatives exhibited equivalent or better protective activity than the positive control (dimethyl dicarboxylate biphenyl, DDB) under the same conditions. Among them, compound 1b showed the most potent hepatoprotective activity against Con A-induced immunological injury. Mechanistic studies in vitro revealed that 1b inhibited cell apoptosis and inflammatory responses caused by Con A treatment via IL-6/JAK2/STAT3 signaling pathway. Consistently, it also exhibited significant hepatoprotective activity in mice with Con A-induced immunological liver injury. These results clearly indicated that 1b might be a highly potent hepatoprotective agent targeting IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lulu Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Shasha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Xinglian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China
| | - Yanhua Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| |
Collapse
|
4
|
Hu T, Zhang K, Pan D, Pan X, Yang H, Xiao J, Shen X, Luo P. Inhibition Effect of Dictyophora Polysaccharides on Human Hepatocellular Carcinoma Cell Line HCC-LM3. Med Sci Monit 2020; 26:e918870. [PMID: 32374722 PMCID: PMC7222657 DOI: 10.12659/msm.918870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background It has been reported that polysaccharides have potential novel anti-cancer properties. Previously, we confirmed that Dictyophora polysaccharides could significantly inhibit liver transplantation tumors in mice. However, the mechanism of Dictyophora polysaccharide action on human liver cancer is unclear. Here, we aimed to clarify the mechanism of Dictyophora polysaccharide action on human hepatocellular carcinoma cells, namely the effect on cell proliferation, the cell cycle, and apoptosis, and on the apoptosis-related genes and proteins in vitro. Material/Methods The HCC-LM3 cell line was incubated with 2.5 mg/mL Dictyophora polysaccharides for 24, 48, and 72 h. The cell growth inhibition rate was evaluated using Cell Counting Kit-8. Cell cycle and apoptosis were measured with flow cytometry. The expression of apoptosis-related genes and proteins was measured using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Results The Dictyophora polysaccharides inhibited HCC-LM3 cell proliferation in a time- and dose-dependent manner and blocked the cell cycle in the G2/M phase. In addition, Bax and caspase-3 expression were significantly increased after Dictyophora polysaccharides treatment. Conclusions To the best of our knowledge, this is the first published study on the mechanism of Dictyophora polysaccharide inhibition of HCC-LM3 cell proliferation.
Collapse
Affiliation(s)
- Ting Hu
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China (mainland).,The Key Laboratory Environmental Pollution and Disease Monitoring, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Kaiju Zhang
- Center for Disease Control and Prevention of Guiyang, Guiyang, Guizhou, China (mainland)
| | - Di Pan
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Xueli Pan
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Hongyan Yang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Jiayan Xiao
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Xiangchun Shen
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Peng Luo
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China (mainland).,The Key Laboratory Environmental Pollution and Disease Monitoring, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
5
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
6
|
Shahid I, Rizwan M, Mehnaz S. Identification and Quantification of Secondary Metabolites by LC-MS from Plant-associated Pseudomonas aurantiaca and Pseudomonas chlororaphis. Bio Protoc 2018; 8:e2702. [PMID: 34179247 DOI: 10.21769/bioprotoc.2702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/02/2022] Open
Abstract
Increased antibiotic resistance of plants and human pathogens and continuous use of chemical fertilizers has pushed microbiologists to explore new microbial sources as potential antagonists. In this study, eight strains of Pseudomonas aurantiaca and Pseudomonas chlororaphis, have been isolated from different plant sources and screened for their antagonistic and plant growth promoting potential ( Shahid et al., 2017 ). All strains were compared with reference strain PB-St2 and their secondary metabolites were isolated by the use of solvent partitioning and subjected to LC/ESI/MS for confirmation of compounds. The ESI-mass spectra obtained were used to characterize the surfactants ionization behavior and [M + H]+ and [M + Na]+ ions were monitored for phenazines, derivatives of lahorenoic acid and cyclic lipopeptide (WLIP). LC-MS and HPLC methods were developed to see the elution of dominant metabolites in a single run to avoid the labor and separate methods of detection for all compounds. The method was found suitable and distinctively separated the compounds at different retention times in gradient flow. This method can be helpful to explore the metabolome of Pseudomonas sp. overall and in identification and quantification of strain specific metabolites.
Collapse
Affiliation(s)
- Izzah Shahid
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, Government College Township, Lahore, Pakistan
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
7
|
De Vleeschouwer M, Martins JC, Madder A. First total synthesis of WLIP: on the importance of correct protecting group choice. J Pept Sci 2016; 22:149-55. [PMID: 26856688 DOI: 10.1002/psc.2852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
Cyclic lipodepsipeptides (CLPs) are a group of metabolites produced by Pseudomonas bacteria, involved in various biological functions and displaying a wide range of properties, including antibacterial and antifungal activities. The white line-inducing principle (WLIP) is a member of the viscosin group featuring a Glu2 amino acid. Recently, a total synthesis of pseudodesmin A - the Gln2 counterpart of WLIP - was described, and we here expand this route to Glu2 containing CLPs. We report the first total synthesis of WLIP and at the same time establish that the Gln2 to Glu2 substitution has an adverse impact on the crude purity and overall yield. A comparative study of different CLP analogues reveals the importance of the nature of the Glx2 protecting group in determining these outcomes. Replacement of the conventional tBu protecting group by the larger benzyl group for the Glu residue in our synthesis strategy indeed resulted in an improved conversion. Next to achieving the first WLIP total synthesis, we thus show the importance of a careful choice of protecting groups for the success of this type of solid-phase synthesis approaches towards CLPs.
Collapse
Affiliation(s)
- Matthias De Vleeschouwer
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium.,Department of Organic and Macromolecular Chemistry, NMR and Structure Analysis Unit, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| | - José C Martins
- Department of Organic and Macromolecular Chemistry, NMR and Structure Analysis Unit, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Fan Y, Lu H, Ma H, Feng F, Hu X, Zhang Q, Wang J, Xu Y, Zhao Q. Bioactive compounds of Eriocaulon sieboldianum blocking proliferation and inducing apoptosis of HepG2 cells might be involved in Aurora kinase inhibition. Food Funct 2016; 6:3746-59. [PMID: 26369427 DOI: 10.1039/c5fo00371g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eriocaulon sieboldianum (Sieb. & Zucc. ex Steud.) is an edible and medicinal plant used in traditional Chinese medicine. Often in combination with other herbs, it is processed into healthcare beverages for expelling wind-heat, protecting eyes, and reducing blood lipids. Besides, its water decoction together with other herbs has been utilized to treat cancer in China. However, the active ingredients and the precise cellular mechanisms of E. sieboldianum remain to be elucidated. The Aurora kinase family plays critical roles in the regulation of cell division and has attracted great attention to the identification of small-molecule Aurora kinase inhibitors for potential treatment of cancer. A molecular docking study was employed for docking of the most bioactive compounds. Hispidulin (HPDL) and quercetin-3-O-(6''-O-galloyl)-β-D-galactopyranoside (QGGP) were singled out as potent inhibitors of Aurora kinase. Their inhibitory activity towards Aurora kinase was further confirmed by the obvious decrease in autophosphorylation of Aurora-A (Thr288) and Aurora-B (Thr232). Moreover, the induction of cell cycle arrest in HepG2 cells and the suppressed phosphorylation of histone H3 were also consistent with the inhibition of Aurora kinase. The data indicate that the E. sieboldianum extract and its two active compounds, HPDL and QGGP, could effectively induce apoptosis via p53, MAPKs and the mitochondrial apoptotic pathways. These findings could improve the understanding and enhance the development of drugs based on E. sieboldianum and raise its application value in anticancer therapy or prevention. In addition, our results indicated that Aurora kinase might be a novel target of HPDL and QGGP.
Collapse
Affiliation(s)
- Yanhua Fan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Hongyuan Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Hongda Ma
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Xiaolong Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Qiao Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Jian Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yongnan Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| |
Collapse
|
9
|
Eroğlu C, Seçme M, Atmaca P, Kaygusuz O, Gezer K, Bağcı G, Dodurga Y. Extract of Calvatia gigantea inhibits proliferation of A549 human lung cancer cells. Cytotechnology 2016; 68:2075-81. [PMID: 26820971 DOI: 10.1007/s10616-016-9947-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/16/2016] [Indexed: 12/18/2022] Open
Abstract
In this study, in order to investigate the anticancer mechanism of Calvatia gigantea extract, edible mushroom species, which belong to Lycoperdaceae family, changes of CCND1, CCND2, CDK4, p21, Akt, Bax, Bcl-2, p53, caspase-3 and caspase-9 were evaluated in A549 lung cancer cells. Cytotoxic effect of C. gigantea extract was evaluated by using XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5 carboxanilide). The C. gigantea extract was treated in a time and dose dependent manner within the range 25 μg/ml-2 mg/ml to determine the IC50 dose. IC50 dose for C. gigantea extract was detected as 500 μg/ml for 72 h. According to expression results, while CCND1, CCND2, CDK4, Akt and Bcl-2 expression clearly decreased, Bax, p53, caspase-3 and caspase-9 expression clearly increased in the dose group cells (A549 cells treated with 500 μg/ml dose of C. gigantea extract for 72 h). However, there was no change in p21 expression. C. gigantea extract induced cell cycle arrest and apoptosis by decreasing the CCND1, CCND2, CDK4, Akt and Bcl-2 expression and by increasing Bax, p53, caspase-3 and caspase-9 expression in A549 cells. Mushrooms are eukaryotic organisms heavily used because of their supposedly anticancer effect. Many mushroom species have been used for medical purposes, as a result of also having many effects such as antibiotic, antiviral and anticancer effects. It is thought that the C. gigantea extract may be a significant agent for treatment of lung cancer as a single agent or in combination with other drugs.
Collapse
Affiliation(s)
- Canan Eroğlu
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Kınıklı/Denizli, Turkey.
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Kınıklı/Denizli, Turkey
| | - Pelin Atmaca
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Oğuzhan Kaygusuz
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Kutret Gezer
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Gülseren Bağcı
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Kınıklı/Denizli, Turkey
| |
Collapse
|
10
|
Sun C, Zhang G, Luan S, Luan C, Shao H, Dong F, Liu X. Evodiamine inhibits the proliferation of leukemia cell line K562 by regulating peroxisome proliferators-activated receptor gamma (PPARγ) pathway. J Recept Signal Transduct Res 2015; 36:422-8. [DOI: 10.3109/10799893.2015.1122040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|